
LangGraph
文章平均质量分 90
佑瞻
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LangGraph 函数式 API 实战:用极简方式构建强大工作流系统
非侵入性:无需重构现有代码,几行装饰器即可添加高级功能灵活性:支持标准 Python 控制流,兼容函数式与图形 API完备性:涵盖并行执行、持久化、人机交互等复杂场景需求。原创 2025-06-22 18:56:34 · 745 阅读 · 0 评论 -
LangGraph Functional API 实战:用最小改动为应用注入持久化与交互能力
的定义非常简洁,只需装饰一个函数并指定 checkpointer(用于持久化):python"""累加器工作流,演示短期记忆功能"""这个工作流接收一个数字,与之前的结果累加。当我们多次调用时:python# 第一次调用print(result1) # 输出: 1# 第二次调用,previous会记住上次的结果print(result2) # 输出: 3@task异步执行:不阻塞主线程,可并发处理多个任务检查点保存:任务结果会保存到检查点,支持工作流恢复python@task。原创 2025-06-22 18:49:41 · 598 阅读 · 0 评论 -
深度解析 LangGraph 多智能体系统的通信机制与状态管理策略
多智能体系统的通信与状态管理是 AI 工程化的核心挑战,其设计质量直接影响系统的可扩展性与可靠性。本文系统梳理了 LangGraph 中相关的技术细节与实践方案,希望能为开发者提供实用的技术参考。原创 2025-06-22 18:34:11 · 823 阅读 · 0 评论 -
LangGraph 多智能体架构全解析:五种经典模式与交接实战应用指南
显式控制流(普通边):LangGraph 允许通过 普通图边显式定义应用程序的控制流(即智能体之间通信的顺序)。这是上述架构中最具确定性的变体 —— 我们始终提前知道接下来将调用哪个智能体。动态控制流(指令):在LangGraph中,可以让大语言模型(LLMs)决定应用程序控制流的部分内容。这可以通过使用Command来实现。其中一种特殊情况是监督者工具调用架构。在这种情况下,为监督者智能体提供支持的工具调用大语言模型将决定调用工具(智能体)的顺序。python# 显式定义调用流程适用场景。原创 2025-06-22 18:05:05 · 997 阅读 · 0 评论 -
深入解析 LangGraph 子图:从架构设计到复杂系统构建的全实践指南
封装与抽象:将复杂逻辑封装为可复用的子图模块灵活通信:支持共享状态与状态转换两种通信模式工程化支持:提供持久化、状态查看、流式处理等工程能力。原创 2025-06-22 17:16:48 · 793 阅读 · 0 评论 -
解锁 LangGraph 时间旅行功能:从决策溯源到路径探索的全流程实践
LangGraph 的时间旅行功能为我们提供了一把打开非确定性系统决策黑箱的钥匙。通过精准的状态回溯和路径探索,我们能够更深入地理解智能体的决策过程,更高效地调试问题,更灵活地探索不同的解决方案。原创 2025-06-22 17:04:42 · 661 阅读 · 0 评论 -
深度剖析 LangGraph 断点调试体系:从底层原理到全场景实战指南
断点调试作为 LangGraph 开发中的 "瑞士军刀",其价值远不止于定位 bug,更在于帮助我们深入理解图计算的运行本质。从静态断点的精准定位到动态断点的智能触发,从单图调试到分布式环境下的断点协调,每一个技术细节都蕴含着框架设计者的匠心。原创 2025-06-22 16:17:29 · 713 阅读 · 0 评论 -
LangGraph 人工介入机制实战:interrupt 功能设计与应用模式解析
先来看一个完整的中断示例,注意代码中三个关键阶段的衔接:python# 1. 定义包含interrupt的节点函数"""当图执行到该节点时会暂停,等待人工输入"""# 传递需要人工处理的文本内容"instruction": "请将这段文本简化为50字以内"})# 返回人工处理后的结果,更新图状态# 2. 构建并编译图checkpointer = Checkpointer() # 必须指定检查点保存状态# 3. 执行图并处理中断# 首次调用触发中断。原创 2025-06-22 16:01:46 · 1053 阅读 · 0 评论 -
LangGraph 长期记忆框架解析:类型划分与更新策略实践指南
长期记忆是智能体从 "人工" 走向 "智能" 的关键一步。通过理解记忆的类型和更新策略,我们可以构建出更具个性化、更能适应用户需求的智能应用。从语义记忆的精准存储,到情景记忆的经验积累,再到程序性记忆的自主优化,每一个环节都凝聚着人类认知科学与 AI 技术的智慧结晶。原创 2025-06-22 15:21:46 · 1243 阅读 · 0 评论 -
深入解析 LangGraph 持久性机制:从状态管理到跨线程记忆共享
LangGraph 的持久性机制不仅是简单的状态保存,更是构建 "有记忆" 智能系统的基础。从检查点的时光胶囊到 Store 的跨线程记忆,从状态回放的时间旅行到加密存储的安全保障,这套机制为我们提供了完整的状态管理解决方案。特别值得注意的是 Pending Writes 处理、检查点接口规范等底层设计,它们构成了 LangGraph 高可用的核心支撑。原创 2025-06-21 14:09:18 · 1027 阅读 · 0 评论 -
LangGraph 流式输出全攻略:从基础用法到高级特性的深度解析
通过,我们可以在节点内部主动发送自定义数据:pythonquery: strgraph = (.compile()# 流式传输自定义数据为用户提供更流畅的实时交互体验优化内存使用,处理大规模输出精确监控和调试复杂流程实现 LLM 生成内容的实时展示。原创 2025-06-21 13:51:04 · 1208 阅读 · 0 评论 -
LangGraph 归约器深度解析:从状态更新到复杂流程的核心控制机制
通过 LangGraph,我们获得了一种声明式定义复杂流程的能力,而其中归约器是实现状态高效管理的核心机制。优先设计状态结构与归约器:在构建图之前,先明确每个状态键的更新规则,通过 Annotated 类型指定合适的归约器并行场景必用归约器:只要有多个节点可能更新同一状态键,就应该考虑使用归约器避免覆盖善用 operator 模块的归约器(列表追加、数值累加)、(字符串拼接)等是最常用的归约器复杂场景自定义归约器:如果内置归约器不满足需求,可以定义自定义函数作为归约器归约器与条件分支结合。原创 2025-06-20 20:28:41 · 1118 阅读 · 0 评论 -
深入理解 LangGraph:从状态图构建到复杂流程控制的全攻略
通过 LangGraph,我们获得了一种声明式定义复杂流程的能力:从线性步骤到并行分支,从条件路由到循环控制,再到异步处理与命令式编程的结合,这套框架几乎覆盖了智能应用开发中的所有流程控制场景。从状态建模开始:先定义清晰的 State 结构,通过 Reducer 控制状态更新方式善用快捷方式等方法能大幅减少线性流程的代码量注意并行执行的顺序性:当需要严格顺序时,通过状态字段或延迟执行控制始终设置循环终止条件:结合递归限制,避免程序异常在 IO 密集场景使用异步:充分利用ainvoke提升并发性能。原创 2025-06-20 20:25:06 · 914 阅读 · 0 评论 -
LangGraph 状态管理全解析:从定义到高级应用
在 LangGraph 中,状态可以通过多种方式定义,包括 TypedDict、Pydantic 模型或数据类。我们先以 TypedDict 为例,看看如何构建一个基础的状态结构:python运行这个状态结构包含两个字段:一个消息列表和一个整数类型的额外字段。默认情况下,图的输入和输出模式由状态决定,这为大多数 LLM 应用提供了灵活的表述方式。默认情况下,StateGraph 使用单一模式,但我们也可以定义独立的输入和输出模式:python运行# 输入模式# 输出模式# 整体模式pass。原创 2025-06-20 20:07:28 · 329 阅读 · 0 评论 -
深入理解 LangGraph 运行时 Pregel:从架构设计到实战应用
今天我们深入剖析了 LangGraph 运行时 Pregel 的核心机制,从架构设计到具体实现,再到实战示例,全面了解了这个强大的图计算引擎。无论是处理大规模并行任务,还是管理多智能体间的状态通信,Pregel 都提供了完善的解决方案。原创 2025-06-20 19:53:21 · 248 阅读 · 0 评论 -
深入解析 LangGraph 的动态控制流与状态管理:从 Send 到 Command 的全场景实践
通过今天的分享,我们深入了解了 LangGraph 中Send和Command这两个核心组件,以及它们在动态控制流和状态管理中的强大能力。从 map-reduce 模式的动态边生成,到多智能体交接中的状态更新与流程控制,再到子图导航、图迁移等高级特性,LangGraph 为我们提供了一套完整的解决方案。原创 2025-06-20 19:48:52 · 728 阅读 · 0 评论 -
深入理解 LangGraph:智能体工作流的图模型设计与实践
边是流程的 "导航系统",根据状态决定下一个执行的节点:python运行# 根据处理阶段选择下一个节点else:边可以是固定转移或条件分支,决定了节点间的执行顺序。核心关系总结:节点负责处理业务逻辑,边控制流程走向,状态则是贯穿始终的信息载体。这种设计让复杂循环流程变得可控,就像用电路图规划电流路径。使用 Annotated 为字段指定 Reducer 函数,例如列表追加:python运行# 使用add函数实现列表合并# 初始状态state = {"logs": ["系统启动"]}原创 2025-06-20 19:14:20 · 1151 阅读 · 0 评论 -
LLM 工作流与智能体架构深度解析:从提示链到自主决策系统的实践
工作流:通过预定义的代码路径编排 LLM 和工具,如同按照剧本表演的演员,流程固定且可预测智能体:LLM 动态指导自身流程和工具使用,类似即兴发挥的导演,能根据环境自主调整策略Anthropic 在《Building Effective Agents》中形象地指出:"工作流是被代码控制的 LLM 应用,而智能体是 LLM 控制的应用系统"。工作流会固定调用 "医学知识库查询" 工具并返回结果智能体可能先判断问题复杂度,再决定是调用知识库、建议就医,还是追问症状细节。原创 2025-06-20 18:39:22 · 330 阅读 · 0 评论 -
深入解析 LLM 智能体架构:从路由器到自定义框架的全栈实践
应用场景:金融交易、个人信息修改、高价值操作实现方式:通过 interrupt () 函数暂停流程等待审核LangGraph 实现python运行# 触发人工审核f"即将转账{amount}元到账户{to_account},请确认"# 执行转账return "转账成功"else:return "转账已取消"通过本文的解析,我们系统了解了智能体架构的演进路径 —— 从简单的路由器到具备规划、记忆能力的复杂系统,再到支持人工审核和并行处理的高级框架。原创 2025-06-20 18:30:14 · 330 阅读 · 0 评论 -
LangGraph 多智能体系统深度解析:从监督式到群体式架构实战
下面我们深入了解如何自定义交接工具,这是实现灵活多智能体系统的关键:python"""创建自定义交接工具的工厂函数"""description = description or f"转交给{agent_name}"# 创建工具消息,记录交接动作"content": f"成功转交给{agent_name}",# 返回Command对象,指定交接目标和传递的消息goto=agent_name, # 目标智能体名称。原创 2025-06-20 17:46:55 · 912 阅读 · 0 评论 -
LangGraph 内存与人工介入深度解析:构建有记忆的智能交互系统
通过持续生成对话摘要,既能保留关键信息,又不会超出上下文限制:python# 初始化模型,就像找一个"速记员"来总结对话# 配置总结节点,设置摘要规则token_counter=count_tokens_approximately, # 计算令牌数的工具model=model, # 使用的LLM模型max_tokens=384, # 原始消息最大令牌数max_summary_tokens=128, # 总结后的最大令牌数。原创 2025-06-20 17:31:49 · 828 阅读 · 0 评论 -
LangGraph 流式传输与工具开发深度解析:从原理到实战应用
在处理耗时任务时,工具自定义流能有效提升用户体验。实时反馈已处理数据量展示处理进度百分比传递中间结果供预览python"""处理大型数据文件并实时反馈进度"""# 处理每一行数据# 每处理100条记录发送一次进度更新writer(f"已处理 {processed}/{total_records} 条记录,进度: {progress:.2f}%")return "数据处理完成"# 启用自定义流获取工具执行进度。原创 2025-06-20 17:08:29 · 693 阅读 · 0 评论 -
LangGraph:智能体开发基础组件与核心概念解析
通过本文的介绍,我们深入了解了 LangGraph 在智能体开发中的强大能力。从智能体的核心组成到运行机制,从关键特性到预构建组件,从模型配置到上下文管理,LangGraph 为我们提供了一套完整的智能体开发解决方案。快速构建具备记忆能力的智能体轻松实现人在回路的交互控制利用流式输出提升用户体验通过预构建组件加速开发过程灵活配置模型和工具借助上下文管理实现更智能的交互随着 AI 技术的不断发展,智能体在各个领域的应用将越来越广泛。原创 2025-06-20 16:37:51 · 347 阅读 · 0 评论 -
LangGraph 进阶实战:从人工介入到时间旅行的智能交互系统构建
多轮对话中的结构化数据存储跨节点的状态共享持久化层的复杂数据管理LangGraph 允许我们向状态中添加自定义字段,实现更灵活的业务逻辑。人在回路控制:通过 interrupt 机制实现人工干预,提升系统可靠性自定义状态:扩展状态结构,满足复杂业务需求时间旅行:状态历史管理,支持回溯和重放。原创 2025-06-20 15:37:53 · 503 阅读 · 0 评论 -
LangGraph 实战:从基础聊天机器人到智能交互系统的进阶之路
设置入口点并编译状态图:python# 添加从起点到聊天节点的边# 编译得到可执行的图python# 初始化搜索工具,最多返回2条结果# 测试工具调用")工具会返回包含标题、URL 和内容摘要的搜索结果,这些信息可以帮助机器人回答更专业的问题。通过 LangGraph,我们实现了从基础聊天机器人到具备工具调用和记忆能力的智能交互系统。整个过程中,StateGraph 作为状态机的核心思想贯穿始终,通过节点和边的组合,我们可以灵活定义复杂的交互逻辑。原创 2025-06-20 12:18:35 · 1062 阅读 · 0 评论