
自然语言处理
文章平均质量分 87
TheJustice_
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深入QLora大模型微调:原理与实践
由于QLora是一个虚构的模型,我将提供一个基于真实存在的预训练模型BERT的微调示例,使用Python和Hugging Face的Transformers库。QLora模型的微调是一个涉及多个步骤的复杂过程,但通过合理的策略和细致的调整,可以显著提升模型在特定任务上的表现。它通过减少自注意力层中的Query数量,降低了模型的参数量和计算成本,同时通过特殊的权重分配策略,保持了对关键信息的捕捉能力。根据任务的特点选择合适的损失函数,如交叉熵损失、序列损失等,以指导模型在微调过程中的学习方向。原创 2024-07-16 19:00:05 · 1795 阅读 · 0 评论 -
BERT架构的深入解析
BERT通过其双向Transformer编码器和预训练策略,在各种NLP任务中取得了卓越的性能。其成功不仅展示了预训练模型的强大能力,也为NLP研究和应用带来了新的方向和思路。随着研究的深入和技术的进步,BERT及其变种将在更多的应用场景中展现出其强大的潜力和价值。原创 2024-07-15 15:54:14 · 875 阅读 · 0 评论 -
Transformer架构的深入解析
Transformer架构主要由编码器(Encoder)和解码器(Decoder)两部分组成,每部分又包含多个相同的层。每一层包含两大核心组件:多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。Transformer架构通过其创新的自注意力机制和并行计算能力,解决了传统RNN和LSTM模型在处理长序列时的瓶颈,成为了现代NLP领域的主流方法。其在各种NLP任务中的优异表现,充分展示了其强大的能力和广泛的应用前景。原创 2024-07-15 12:29:20 · 1089 阅读 · 0 评论 -
自然语言处理技术的发展过程
自然语言处理技术的发展历程展示了从规则驱动到统计模型,再到深度学习和预训练模型的演变过程。每一个阶段的技术进步都为NLP领域带来了新的可能性,使得计算机能够更加智能地理解和处理人类语言。未来,随着计算能力的进一步提升和新技术的不断涌现,NLP技术必将在更多应用场景中展现出其强大的潜力和价值。原创 2024-07-15 12:24:00 · 1389 阅读 · 0 评论