归一化互相关(NCC)及其部分应用场景

90 篇文章 ¥69.90 ¥99.00
归一化互相关(NCC)用于增强光照变化下的图像匹配鲁棒性,常通过图像金字塔加速匹配过程,并采用亚像素插值提升精度。在处理旋转和缩放时,通过生成多张模板进行匹配。然而,模版匹配在面对遮挡问题和光照变化时表现不佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,如何理解归一化互相关(NCC)

 

 

 

 

 2,部分应用场景

基于灰度的匹配一般被称为模版匹配,直接以灰度进行匹配效果不好,对光照很敏感,所以一般会以灰度归一化互相关(NCC)作为匹配依据,增强光照变化下的鲁棒性,为了降低计算量,多采用图像金字塔来实现先粗后精的方式加快匹配速度,匹配出像素位置后,会进一步做亚像素插值,使匹配出的位置达到更高的精度,处理旋转和缩放也很直接,就是在限定的角度范围和缩放比例内,取一定的步长生成多张模版,一一进行匹配。模版匹配处理遮挡比较困难,对光照变化想当敏感,如果有遮挡,一般情况下就

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thequitesunshine007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值