论文:http://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf,
CRF as RNN论文的代码在https://github.com/torrvision/crfasrnn可以找到。
有一个在线的demo可以演示http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
这篇博文主要是记录自己对CRF as RNN中的 MultiStageMeanfieldLayer 的解读。涉及到的文件有multi_stage_meanfield的头文件与实现、meanfield的头文件与实现。
这个代码是基于老版本的caffe,大部分的层的头文件都在vision_layers.hpp中,
对应的位置是class MultiStageMeanfieldLayer 和 class MeanfieldIteration,比较简单,MultiStageMeanfieldLayer才是真正的层,而MeanfieldIteration是一个辅助类,直接看实现。
层运算的入口便是LayerSetUp,前面都是成员变量的初始化,接着是读取spatial.par和bilateral.par。 然后是计算spatial_kernel,直接调用了
compute_spatial_kernel()函数:
template <typename Dtype>
void MultiStageMeanfieldLayer<Dtype>::compute_spatial_kernel(float* const output_kernel) {
for (int p = 0; p < num_pixels_; ++p) {
output_kernel[2*p] = static_cast<float>(p % width_) / theta_gamma_;
output_kernel[2*p + 1