Ollama

Ollama

快速上手大型语言模型。

macOS

下载

Windows

下载

Linux

curl -fsSL https://ollama.com/install.sh | sh

手动安装说明

Docker

官方的 Ollama Docker 镜像 ollama/ollama 已在 Docker Hub 上提供。

社区

快速入门

要运行并与 Llama 3.2 对话:

ollama run llama3.2

模型库

Ollama 支持 ollama.com/library 上可用的模型列表。

以下是可以下载的一些示例模型:

模型名称 参数量 大小 下载命令
Gemma 3 1B 815MB ollama run gemma3:1b
Gemma 3 4B 3.3GB ollama run gemma3
Gemma 3 12B 8.1GB ollama run gemma3:12b
Gemma 3 27B 17GB ollama run gemma3:27b
QwQ 32B 20GB ollama run qwq
DeepSeek-R1 7B 4.7GB ollama run deepseek-r1
DeepSeek-R1 671B 404GB ollama run deepseek-r1:671b
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 4 Mini 3.8B 2.5GB ollama run phi4-mini
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Granite-3.2 8B 4.9GB ollama run granite3.2

[!NOTE] 运行 7B 模型至少需要 8 GB 内存,运行 13B 模型需要 16 GB 内存,运行 33B 模型需要 32 GB 内存。

定制模型

从 GGUF 导入

Ollama 支持从 Modelfile 中导入 GGUF 模型:

  1. 创建一个名为 Modelfile 的文件,使用 FROM 指令并提供要导入的模型的本地文件路径。

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. 在 Ollama 中创建模型

    ollama create example -f Modelfile
    
  3. 运行模型

    ollama run example
    

从 Safetensors 导入

请参考指南了解更多关于导入模型的信息。

定制提示

来自 Ollama 库的模型可以通过提示进行定制。例如,定制 llama3.2 模型:

ollama pull llama3.2

创建一个 Modelfile

FROM llama3.2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

接下来,创建并运行模型:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

了解更多关于使用 Modelfile 的信息,请查阅Modelfile 文档。

命令行界面参考

创建模型

使用 ollama create 命令可以从 Modelfile 创建一个模型。

ollama create mymodel -f ./Modelfile

提取模型

ollama pull llama3.2

这条命令同样可以用来更新本地模型。只会拉取差异部分。

删除模型

ollama rm llama3.2

复制模型

ollama cp llama3.2 my-model

多行输入

对于多行输入,您可以使用 """ 将文本包裹起来:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

多模态模型

ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"

输出:图像展现了一个黄色的笑脸,这很可能是图片的中心焦点。

Pass the prompt as an argument

ollama run llama3.2 "Summarize this file: $(cat README.md)"

输出:Ollama 是一个轻量级、可扩展的框架,用于在本地计算机上构建和运行语言模型。它提供了创建、运行和管理模型的简单 API,以及一系列预构建模型的库,这些模型可以轻松地应用于各种场景。

显示模型信息

ollama show llama3.2

在您的计算机上列出模型

ollama list

列出当前已加载的模型

ollama ps

停止当前正在运行的模式

ollama stop llama3.2

开始 Ollama

使用 ollama serve 命令,可以在不运行桌面应用程序的情况下启动 ollama。

构建指南

请参阅开发者指南

运行本地构建

接下来,启动服务器:

./ollama serve

最后,在另一个独立的壳中,运行一个模型:

./ollama run llama3.2

REST API

Ollama 提供了一套 REST API,用于运行和管理模型。

生成响应

curl http://localhost:11434/api/generate -d '{
  "model": "llama3.2",
  "prompt":"Why is the sky blue?"
}'

与模型对话

curl http://localhost:11434/api/chat -d '{
  "model": "llama3.2",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

查看API 文档了解所有端点。

社区集成

Web & 桌面

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thesky123456

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值