llama factory怎么命令行推理图片

根据LLaMA-Factory多模态数据处理规范,配置图片输入需注意以下核心要点:

---

**一、本地图片路径配置**
1. 绝对路径配置:
   ```json
   "images": ["/home/user/project/data/mllm_demo_data/1.jpg"]
   ```
   *适用场景*:跨平台或数据存储位置固定的场景

2. 相对路径配置:
   ```json
   "images": ["data/mllm_demo_data/1.jpg"]
   ```
   *注意*:相对路径基准为项目根目录或配置文件所在目录(需根据LLaMA-Factory版本确认)

---

**二、数据集文件结构**
1. 目录树示例:
   ```
   LLaMA-Factory/
   ├── data/
   │   ├── mllm_demo.json       # 数据集定义文件
   │   └── mllm_demo_data/      # 图片存储目录
   │       ├── 1.jpg
   │       ├── 2.jpg
   │       └── 3.jpg
   ```

2. 数据文件格式(网页3):
   ```json
   [
     {
       "messages": [
         {"role": "user", "content": "描述这张电路图"},
         {"role": "assistant", "content": "这是由电阻R1、电容C2和运放U3组成的低通滤波电路..."}
       ],
       "images": ["data/mllm_demo_data/circuit_001.jpg"]
     }
   ]
   ```

---

**三、关键配置验证**
1. dataset_info.json校验:
   ```json
   "circuit_sum_data": {
     "file_name": "circuit_sum_data.json",  // 实际数据文件名
     "formatting": "sharegpt",
     "columns": {
       "messages": "messages",  // 必须与数据文件字段名一致
       "images": "images"       // 必须包含图片路径数组
     },
     "tags": {
       "role_tag": "role",      // 角色字段映射
       "content_tag": "content" // 内容字段映射
     }
   }
   ```

2. 路径兼容性检查:
   • Windows系统需使用双反斜杠:`"images": ["data\\mllm_demo_data\\1.jpg"]`

   • 中文路径需确保文件编码为UTF-8


---

**四、调试建议**
1. 启动测试命令:
   ```bash
   CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llava1_5.yaml
   ```
   *验证点*:上传图片后观察控制台是否输出`Loaded image from [路径] successfully`

2. 错误排查:
   • 路径错误:`FileNotFoundError: No such file or directory`

   • 格式错误:`ValueError: Invalid image path format`

   • 编码错误:`UnicodeDecodeError`


---

操作提示:建议首次使用时复制官方示例数据集(网页2的`data/mllm_demo`)进行结构验证,再逐步替换为自己的数据和图片。若需批量处理图片,可使用Python脚本自动生成路径列表:
```python
import glob
images = glob.glob("data/mllm_demo_data/*.jpg")  # 自动抓取目录下所有jpg文件
```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thesky123456

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值