#idea来源#
在使用spss帮朋友做单因素分析时,发现个别数据需要调整到符合显著性的要求,在spss中修改数据,再在spss中操作步骤太麻烦,于是有了这个想法。
程序思路
1、将数据放到excel里,确定两列数据,Group(分组数据)和B(对应数据列)
2、程序读取excel数据
3、整理数据格式,将数据分组,将数据从宽格式转换为长格式,以便于进行ANOVA分析。
4、执行单因素方差分析(ANOVA),使用 statsmodels
的 ols
和 anova_lm
方法进行单因素方差分析。
5、计算均方误差(MSE)和LSD值,计算每组的均值和标准差,根据均方误差和样本量计算LSD值。
6、进行LSD多重比较,比较各组之间的均值差异,判断是否显著。
程序代码:
import pandas as pd
import numpy as np
from scipy import stats
import statsmodels.api as sm
from statsmodels.formula.api import ols
# 读取数据
file_path = 'data.xlsx' # 替换为你的数据文件路径
df = pd.read_excel(file_path)
# 查看数据结构
print(df.head())
# 转换数据格式为长格式
data_long = pd.melt(df, id_vars=['Group'], value_vars=['B'], var_name='Sample', value_name='Value')
# 查看长格式数据
print(data_long.head())
# 执行单因素方差分析(ANOVA)
model = ols('Value ~ C(Group)', data=data_long).fit()
anova_table = sm.stat