基于ai studio训练paddle-paddle模型

本文详细介绍了如何在Aistudio中创建Notebook项目,配置PaddleDetection环境,处理非VOC数据集,以及修改配置文件并训练模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、创建项

1.在ai studio界面点击个人中心→项目→创建和Fork的项目→创建项目
2. 项目信息

①选择类型,Notebook

②配置环境,Notebook版本:BML Codelab;项目框架:PaddlePaddle2.x;项目环境不用选择

③项目描述,所填信息可随便选择;关于数据集,添加数据集所使用的是平台提供的数据集,创建数据集使用的是自己的数据集

3.页面信息

 ①点击+可以添加终端

②位于data文件夹下的内容不会被保存,除了平台提供的数据集

二、开始训练

1.训练环境准备
# 更换当前路径
cd /home/aistudio/work

# 下载PaddleDetection代码
git clone https://gitee.com/paddlepaddle/PaddleDetection

# 下载依赖
pip install -r PaddleDetection/requirements.txt

# 下载 pycocotools
pip insatll pycocotools
 2.数据集
# 解压数据
unzip -o /home/aistudio/data/data50329/HelmetDetection.zip -d PaddleDetection/dataset/ #第一个是数据集压缩包的路径,第二个是解压后的位置

 如果数据集不是voc格式的要转化为voc格式,voc格式可以把图片放在同一个文件夹,但是txt文件要在不同的文件夹

3.修改训练配置文件

①/home/aistudio/work/PaddleDetection/dataset/voc/label_list.txt   文件中的类要修改成我们数据集标注的所有类的集合

②/home/aistudio/work/PaddleDetection/configs/datasets/voc.yml  文件中的标签个数为3,dataset_dir为      ,anno_path修改为train.txt(我们之前创建的就是train.txt)

③/home/aistudio/work/PaddleDetection/configs/picodet/picodet_s_416_coco_lcnet.yml  

_BASE_修改为:../datasets/voc.yml  

pretrain_weights修改为: https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams(预训练权重)

4.训练模型
python PaddleDetection/tools/train.py -c PaddleDetection/configs/datasets/voc.yml

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值