linux系统配置nvidia显卡环境用于tensorflow、pytorch等深度学习框架

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

前言

如果机器中存在NVIDIA的GPU显卡,如何去利用呢。首先确保系统中已经安装相应型号的驱动。其次要确保python环境中有链接NVIDIA驱动相应的包,如cuda和cudnn等。如果想用NVIDIA的GPU加速,必须安装NVIDIA的驱动和cuda工具包。本文默认驱动已经安装。

一、概念

1.GPU驱动

GPU驱动是专门为图形处理单元(GPU)设计的软件,它可以让GPU能够更加高效地运行图形处理任务。GPU驱动程序通常由GPU制造商提供,例如NVIDIA和AMD。安装GPU驱动程序后,可以确保GPU能够与操作系统和其他软件兼容,并优化GPU的性能和功能。

2.cuda

CUDA(Compute Unified Device Architecture)是由NVIDIA推出的开放式并行计算平台和编程模型,它基于NVIDIA的GPU,使得开发者能够使用高级编程语言(如C/C++和CUDA C/C++)来编写程序,以利用GPU的并行处理能力。CUDA使得开发者能够更方便地利用GPU的计算能力,以加速科学计算、图形渲染、深度学习等领域的应用。

3.cuda toolkit

CUDA Toolkit,也称为NVIDIA CUDA工具包,是一个由NVIDIA开发的并行计算平台和编程模型。它提供了一套完整的开发环境,以创建经GPU加速的高性能应用。CUDA Toolkit包含多个GPU加速库、多种调试和优化工具、一个C/C++编译器以及一个用于在主

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值