Kth number —— 主席树

博客围绕求解序列中区间第k大数字的问题展开。先给出问题描述、输入输出格式及示例,接着提到主席树与线段树不同,是将很多线段树连起来,解题需先离散化,通过rt[r]-rt[l - 1]判断第k个数字所在节点并往下查找。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Give you a sequence and ask you the kth big number of a inteval.

Input
The first line is the number of the test cases.
For each test case, the first line contain two integer n and m (n, m <= 100000), indicates the number of integers in the sequence and the number of the quaere.
The second line contains n integers, describe the sequence.
Each of following m lines contains three integers s, t, k.
[s, t] indicates the interval and k indicates the kth big number in interval [s, t]

Output
For each test case, output m lines. Each line contains the kth big number.

Sample Input
1
10 1
1 4 2 3 5 6 7 8 9 0
1 3 2

Sample Output
2

主席树和线段树还是有很多不一样,主席树就是把很多线段树连起来,除了更新的节点其他的都一样
先离散化
这道题目就是rt[r]-rt[l-1],看看第k个在哪边节点,然后往下找。

#include<bits/stdc++.h>
using namespace std;
#define maxn 100005
int n,m;
int ls[maxn*20],rs[maxn*20],sum[maxn*20],rt[maxn*20];
int tot,a[maxn],b[maxn];
void build(int l,int r,int &root)
{
    root=++tot;
    sum[root]=0;
    if(l==r)
        return ;
    int mid=l+r>>1;
    build(l,mid,ls[root]);
    build(mid+1,r,rs[root]);
}
void update(int l,int r,int &root,int last,int val)
{
    root=++tot;
    ls[root]=ls[last];
    rs[root]=rs[last];
    sum[root]=sum[last]+1;
    if(l==r)
        return ;
    int mid=l+r>>1;
    if(mid>=val)
        update(l,mid,ls[root],ls[last],val);
    else
        update(mid+1,r,rs[root],rs[last],val);
}
int query(int l,int r,int ql,int qr,int num)
{
    if(l==r)
        return l;
    int mid=l+r>>1;
    int pos=sum[ls[qr]]-sum[ls[ql]];
    if(num<=pos)
        return query(l,mid,ls[ql],ls[qr],num);
    else
        return query(mid+1,r,rs[ql],rs[qr],num-pos);
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {

        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]),b[i]=a[i];
        sort(b+1,b+1+n);
        int all=unique(b+1,b+1+n)-(b+1);
        tot=0;
        build(1,all,rt[0]);
        for(int i=1;i<=n;i++)
            a[i]=lower_bound(b+1,b+1+all,a[i])-b;
        for(int i=1;i<=n;i++)
            update(1,all,rt[i],rt[i-1],a[i]);
        int l,r,k;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&l,&r,&k);
            printf("%d\n",b[query(1,all,rt[l-1],rt[r],k)]);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值