对比学习方法
在这种方法中,我们根据查询图像人为地创建相似的图像。例如,我们可以通过旋转查询图像并将新生成的图像用作相似图像来增强查询图像。最近开发的框架(例如 SimCLR [7] 和 MoCo [8])使用相同的方法。
解释SimCLR [7] 和 MoCo [8]
SimCLR (Simple Framework for Contrastive Learning of Visual Representations)
SimCLR是由Google Brain团队提出的一种对比学习框架,用于自监督学习视觉表示。它通过对图像进行数据增强,生成不同的视觉变体,并使用这些变体进行对比学习,从而学习到更有用的视觉表示1。SimCLR的主要特点包括:
数据增强:通过对图像进行随机的数据增强,生成不同的视觉变体。
对比学习:将相似的视觉变体拉近,将不同的视觉变体推开,从而学习到更有用的视觉表示。
大批量训练:SimCLR利用大批量训练来提高模型的性能。
MoCo (Momentum Contrast)
MoCo是由微软研究院提出的一种对比学习方法,用于自监督学习视觉表示。它通过构建一个动量队列来保存过去的特征表示,并使用这些表示进行对比学习,从而学习到更稳定的视觉表示2。MoCo的主要特点包括:
动量队列:通过构建一个动量队列来保存过去的特征表示,保持队列的动态平衡。
对比学习:使用动量队列中的表示进行对比学习,从而学习到更稳定的视觉表示。
自监督学习:利用自监督学习的方法,不依赖于标注数据,从而提高模型的泛化能力
神经网络架构
我们应该使用什么类型的神经网络