图像处理中聚类分析算法---C均值算法实现

本文介绍了C均值算法在图像处理中的应用,详细阐述了算法的迭代过程,包括选择初始聚类中心,使用最近邻规则进行样本分配,计算聚类重心并更新,直至达到最优聚类结果。提供了在VC++ MFC环境下实现C均值算法的参考源码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   C均值算法是聚类分析中最简单的算法,算法主要步骤如下:

(1)如已知分类数为k,选取k个样本点为初始聚类中心,记为z1(l),z2(l),……zk(l),迭代序号l=1;

(2)使用最近邻规则将所有样本分配到各聚类中心所代表的k类ωj(k)中,各类所包含的样本数为Nj(l);

(3)计算各类的重心(均值向量),并令该重心为新的聚类中心,即:

        因为在该步中要计算k个聚类中的样本均值,故称作k均值算法。

(4)如zj(l+1)≠zj(l),表示尚未得到最佳聚类结果,则返回步骤(2),继续迭代计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值