theano中的logisticregression代码学习

本文探讨了逻辑回归的基本原理及其在不同场景下的应用,并详细介绍了使用梯度下降法进行参数优化的过程,包括数据加载、模型构建、训练等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1 class LogisticRegression (object): 
 2    def __int__(self,...):
 3 
 4    #定义一些与逻辑回归相关的各种函数
 5 
 6   def method1(...):
 7 
 8 
 9   def method2(...):
10 
11 def load_data(dataset):
12     # 如何从硬盘中将数据导入到内存中
13     # 并且,要将导入的数据存储在shared variables中
14 
15 def sgd_optimization_mnist(...)
16     
17     #1. 导入数据
18 
19     #2. building model,即定义一些符号变量、计算模型等
20 
21     #3. 开始train,利用真实模型训练model
22 
23 if __main__='__main__':    
24     sgd_optimization_mnist(...)
25     # 即程序的入口

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值