高精度乘法模版(C++)

文章提供了C++实现高精度乘法的模板代码,适用于处理大数乘法问题,通过字符数组存储数字。此外,还介绍了高精度快速幂算法,用于高效计算大数的幂次,并给出了相应的C++实现。这两个方法对进行高精度计算的编程题目非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

        我们在解决一些问题时,由于数值太大(可能有上万位),往往需要用到高精度运算,而高精度加减法还好说,但是高精度乘高精度,就十分困难了,有的同学只能背代码,而此文提供一个方便的、可移植的模版。

正文

        那么我废话不多说,直接上模版:

#include <iostream>
#include <cstring>
const int N = 1e5 + 10;
void multiply(const char* num1, const char* num2, char* result);
int charToDigit(char c) {
	return c - '0';
}
char digitToChar(int digit) {
	return digit + '0';
}
void multiply(const char* num1, const char* num2, char* result) {
	int len1 = std::strlen(num1);
	int len2 = std::strlen(num2);
	int* tempResult = new int[len1 + len2];
	std::memset(tempResult, 0, sizeof(int) * (len1 + len2));
	for (int i = len1 - 1; i >= 0; i--) {
		for (int j = len2 - 1; j >= 0; j--) {
			int product = charToDigit(num1[i]) * charToDigit(num2[j]);
			tempResult[i + j + 1] += product;
		}
	}
	for (int i = len1 + len2 - 1; i > 0; i--) {
		if (tempResult[i] >= 10) {
			tempResult[i - 1] += tempResult[i] / 10;
			tempResult[i] %= 10;
		}
	}
	int startIndex = 0;
	while (tempResult[startIndex] == 0 && startIndex < len1 + len2 - 1) {
		startIndex++;
	}

	for (int i = startIndex; i < len1 + len2; i++) {
		result[i - startIndex] = digitToChar(tempResult[i]);
	}
	result[len1 + len2 - startIndex] = '\0';
	result[len1 + len2] = '\0';
	delete[] tempResult;
}

int main() {
	char num1[N], num2[N];
	std::cin >> num1 >> num2;
	char result[20];
	multiply(num1, num2, result);
	std::cout << result << std::endl; 
	return 0;
}

需要用的读者可以粘贴main函数之上的代码到你的源代码/项目中,使用时需要两个字符数组,作为两个因数,并调用以这两个char数组为参数的multiply函数,结果则存放在result数组中。

希望此模版对您有帮助,另祝各位csp-js、noi的选手们拿到省一!

拓展

高精度快速幂模版:

#include <iostream>
#include <vector>

using namespace std;

// 高精度乘法
vector<int> multiply(vector<int>& a, vector<int>& b) {
    vector<int> result(a.size() + b.size(), 0);
    
    for (int i = 0; i < a.size(); i++) {
        int carry = 0;
        for (int j = 0; j < b.size(); j++) {
            int temp = a[i] * b[j] + carry + result[i + j];
            carry = temp / 10;
            result[i + j] = temp % 10;
        }
        result[i + b.size()] = carry;
    }
    
    // 去掉前导零
    while (result.size() > 1 && result.back() == 0) {
        result.pop_back();
    }
    
    return result;
}

// 高精度快速幂
vector<int> powMod(vector<int>& base, int exponent, int modulus) {
    string binary = "";
    while (exponent > 0) {
        binary = to_string(exponent % 2) + binary;
        exponent /= 2;
    }
    vector<int> result = {1};
    
    vector<vector<int>> powers;
    powers.push_back(base);
    for (int i = 1; i < binary.length(); i++) {
        powers.push_back(multiply(powers[i - 1], powers[i - 1]));
        for (int j = 0; j < powers[i].size(); j++) {
            powers[i][j] %= modulus;
        }
    }
    
    for (int i = 0; i < binary.length(); i++) {
        if (binary[i] == '1') {
            result = multiply(result, powers[i]);
            for (int j = 0; j < result.size(); j++) {
                result[j] %= modulus;
            }
        }
    }
    
    while (result.size() > 1 && result.back() == 0) {
        result.pop_back();
    }
    
    return result;
}

int main() {
    vector<int> base = {1145};
    int exponent = 14;
    int modulus = 1000000007;
    vector<int> result = powMod(base, exponent, modulus);
    for (int i = result.size() - 1; i >= 0; i--) {
        cout << result[i];
    }
    cout << endl;
    
    return 0;
}

如果有什么不懂的问题,欢迎私信问我!

### C++ 中实现高精度乘法的方法 为了应对超出基本数据类型的数值范围,C++ 提供了几种方法来实现高精度乘法。一种常见做法是利用标准模板库中的 `std::vector<int>` 来存储大数的每一位,从而模拟手工计算过程[^1]。 #### 使用 STL 容器类 `std::vector<int>` 是一个动态数组容器,允许程序员方便地管理不定数量的数据项。对于高精度算术而言,这非常适合用来保存多位数字,因为可以轻松扩展以适应不同长度的结果。具体来说,在执行乘法时,可以从低位向高位逐位相乘,并妥善处理进位逻辑。 ```cpp #include <iostream> #include <vector> using namespace std; // Function to multiply two numbers represented as vectors of digits. void highPrecisionMultiply(const vector<int>& num1, const vector<int>& num2, vector<int>& result) { int n1 = num1.size(), n2 = num2.size(); result.resize(n1 + n2); for (int i = 0; i < n1; ++i) { for (int j = 0; j < n2; ++j) { result[i + j] += num1[i] * num2[j]; result[i + j + 1] += result[i + j] / 10; result[i + j] %= 10; } } // Remove leading zeros from the result. while (!result.empty() && result.back() == 0) { result.pop_back(); } } ``` 这段代码展示了如何定义函数 `highPrecisionMultiply()` 来接收两个由整型向量表示的大数作为参数,并返回它们相乘后的结果同样是以整型向量形式给出。这里采用了类似于纸笔运算的方式来进行每位之间的相乘以及必要的进位调整。 #### 利用第三方库 GMP 除了自行编写算法外,还可以借助 GNU Multiple Precision Arithmetic Library (GMP),这是一个专门为高效处理多精度而设计的专业级开源软件包。它不仅支持多种编程语言接口,而且提供了丰富的功能集,包括但不限于加减乘除四则运算、幂次方根求解等复杂操作。使用 GMP 可大大简化开发工作并提高性能表现[^3]。 安装完成后可以通过如下方式引入头文件: ```cpp #include <gmp.h> /* For mpz_t type */ #include <gmpxx.h> /* For C++ wrapper classes */ mpz_class a("123456789"), b("987654321"); cout << "a * b = " << (a * b).get_str() << endl; ``` 此段示范了怎样快速创建两个大规模整数对象并通过内置的操作符重载完成其间的乘法运算,最后输出字符串格式化的答案给用户查看。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码上行者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值