正定矩阵性质

本文探讨了正定矩阵的定义与性质,指出当矩阵A为n阶方阵且其二次型始终大于0时,该矩阵即为正定矩阵。进一步解释了正定矩阵如何确保向量经其变换后的结果与其自身夹角不超过90度,通过向量长度与夹角余弦值的数学表达,深入浅出地解析了正定矩阵的几何意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正定矩阵性质:若矩阵A是n阶方阵,并且它的二次型大于0,即{X^T}AX > 0,则矩阵A是正定矩阵。
理解:
XTMX≥0X^{T}MX≥0XTMX0
XTY≥0(Y=MX)X^TY≥0 (Y=MX)XTY0(Y=MX)
cos(θ)=(XTY)/(∣∣X∣∣∗∣∣Y∣∣)≥0cos(θ)=(X^TY)/(||X||∗||Y||)≥0cos(θ)=(XTY)/(XY)0
||X||, ||Y||代表向量 X,Y的长度,θ是他们之间的夹角。正定矩阵代表一个向量经过它的变化后的向量与其本身的夹角小于等于90度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值