正定矩阵性质:若矩阵A是n阶方阵,并且它的二次型大于0,即{X^T}AX > 0,则矩阵A是正定矩阵。
理解:
XTMX≥0X^{T}MX≥0XTMX≥0
XTY≥0(Y=MX)X^TY≥0 (Y=MX)XTY≥0(Y=MX)
cos(θ)=(XTY)/(∣∣X∣∣∗∣∣Y∣∣)≥0cos(θ)=(X^TY)/(||X||∗||Y||)≥0cos(θ)=(XTY)/(∣∣X∣∣∗∣∣Y∣∣)≥0
||X||, ||Y||代表向量 X,Y的长度,θ是他们之间的夹角。正定矩阵代表一个向量经过它的变化后的向量与其本身的夹角小于等于90度。
正定矩阵性质
最新推荐文章于 2025-06-06 09:28:54 发布