DeepSeek R1赋能:基于多源数据融合的精准施肥决策模型构建与实践
一、引言
在智慧农业快速发展的背景下,传统粗放式施肥方式已难以满足现代农业可持续发展需求。DeepSeek研发团队基于自主研发的DeepSeek-R1智能决策引擎,构建了融合多源异构数据的精准施肥决策模型。该模型通过整合土壤成分、作物生长状态、气象数据等多维度信息,结合深度强化学习与集成学习技术,实现了动态优化的施肥推荐系统。
二、模型架构设计
2.1 系统架构
(图示说明:包含数据采集层、特征工程层、深度决策核心、动态反馈机制四层架构)
2.2 技术特性
- 多模态数据融合:处理光谱数据、传感器时序数据、空间地理数据
- 动态权重调整:基于Attention机制的特征重要性动态计算
- 在线学习机制:通过DeepSeek-R1的增量学习模块实现模型持续优化
三、完整实现实例
3.1 数据准备与预处理
import pandas as pd