基于深度学习的电力市场报价智能决策系统设计与实战
一、行业背景与问题分析
在电力市场化改革不断深化的背景下,发电企业面临日益复杂的报价决策挑战。传统的报价策略主要依赖人工经验,存在以下痛点:
难以实时处理多维市场数据(负荷预测、机组状态、竞争态势等)
缺乏对市场出清价格的精准预测能力
无法快速响应市场规则变化
报价策略优化缺乏量化依据
以某区域电力市场为例,每日需要提交96个时段(每15分钟一个时段)的报价曲线,决策维度高达数百个。本文提出基于深度学习的智能报价决策框架,通过实际案例演示完整实现过程。
二、技术架构设计
系统采用模块化设计,主要包含:
数据层 -> 特征工程 -> 价格预测模型 -> 报价优化引擎 -> 决策输出
│ │
└──风险评估模块───────┘
三、完整实现步骤与代码
环境准备
python
安装核心依赖库
!pip install pytorch-lightning optuna xgboost deap pandas-ta
步骤1:数据准备与特征工程
使用某省级电力市场2021-2023年数据集,包含:
历史出清价格(€/MWh)
机组运行状态
新能源出力占比
温度/湿度等气象数据
竞争对手历史报价模式
python
import pandas as pd
from pandas.tseries.holiday import USFederalHol