深入解析张量广播机制:从原理到实践的全方位指南
引言:广播机制的重要性
在深度学习与科学计算领域,张量广播(Broadcasting)是一项基础且关键的技术。这项机制使得不同形状的张量在进行逐元素运算时,能够自动扩展维度以匹配运算需求。本文将深入剖析广播机制的核心原理,结合大量代码实例演示其应用场景,帮助开发者全面掌握这一重要技术。
一、广播机制基础概念
1.1 张量维度解析
张量的维度(dimension)和形状(shape)是理解广播机制的基础。以三维张量为例:
import numpy as np
tensor_3d = np.arange(24).reshape(