
测试开发和测试
文章平均质量分 89
测试者家园
于涌,知名技术专家和专业图书作者。作为技术专家,曾在多家互联网企业担任技术总监岗位,积累了丰富的实战和管理经验。作为知名图书作者,创作了十余本专业著作,紧跟时代步伐,关注和探索前沿技术的落地与实践,多次获得优秀原创IT图书作者和最受欢迎的IT类图书作者等荣誉。曾为多家企业提供软件测试相关课程、敏捷开发、ChatGPT、AIGC和项目管理等内容的培训和咨询服务。致力于为企业提供实用的技术指导和应用,为读者提供深入并易于理解的知识分享,以促进企业的创新和读者的个人职业发展。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python函数参数的多种写法:默认值、关键字参数
函数参数不是语法糖,而是编程语言表达力的核心接口。在实际开发中,一个良好的参数设计: 能够兼容演进,又不破坏已有调用; 能够简洁表达行为,又不牺牲可读性; 能够支持多场景复用,又保持明确契约。函数是行为的封装,参数是约定的接口。原创 2025-07-19 01:00:00 · 569 阅读 · 0 评论 -
冻结集合:frozenset用法的深度解析与实践启示
集合(set)因其无序唯一的特性,在Python编程中广泛用于去重、快速查找和集合运算。相比之下,frozenset——Python内置的不可变集合类型,则在安全性、哈希性和并发环境中扮演着更加专业且关键的角色。本文将从frozenset的定义、底层原理、实际应用场景及与set的异同切入,带领读者深入理解这一高级数据结构,开拓编程思路,提升代码设计水平。原创 2025-07-15 00:30:00 · 694 阅读 · 0 评论 -
集合运算:交集、并集、差集的理论与实践探究
集合(set)作为Python中核心的数据结构之一,因其独特的数学属性和高效的数据操作性能,在软件开发、测试、运维乃至大数据分析中扮演着不可或缺的角色。集合运算中最基础且广泛应用的三种操作——交集、并集和差集,不仅是集合论的核心内容,也是实现复杂业务逻辑、数据过滤、权限控制等功能的重要工具。原创 2025-07-14 00:45:00 · 1542 阅读 · 0 评论 -
set的add、remove与clear操作详解
Python的集合操作方法add()、remove()和clear(),不仅是程序中管理集合元素的基本工具,更承载了语言设计中的严谨哲学和效率考量。深刻理解并合理应用这些操作,能够帮助开发者和测试专家构建更安全、高效、可维护的系统。尤其是在海量数据处理、实时监控和自动化测试场景中,这三者构成了集合操作的核心基石。原创 2025-07-13 00:45:00 · 1223 阅读 · 0 评论 -
集合(set)的创建与去重特性
集合(set)作为一种基础而高效的数据结构,因其独特的数学性质和编程应用价值,备受开发者、测试工程师和运维专家的青睐。Python语言中内置的set类型不仅简化了数据去重、关系运算等操作,更为代码的简洁性和性能提升提供了重要保障。本文将从集合的定义、创建方法、去重机制、底层原理及典型应用场景多维度展开深入解析,旨在启发读者对集合数据结构的深刻理解和高效利用。原创 2025-07-12 00:30:00 · 444 阅读 · 0 评论 -
敏捷测试中的质量闸门如何设置?
在敏捷开发的浪潮中,交付速度成为核心竞争力,但速度的提升绝不能以质量为代价。因此,“质量闸门”(Quality Gate)作为一种质量保障机制,在敏捷测试中愈加重要。本文将从质量闸门的定义、价值、设置原则与实施策略等方面,系统解析在敏捷测试中如何科学设定质量闸门,助力企业在敏捷转型中实现“快而不脆、变而不乱”。原创 2025-07-11 00:15:00 · 1092 阅读 · 0 评论 -
用 LLM 辅助性能测试报告生成
借助 LLM 技术生成性能测试报告,不仅仅是提高效率的手段,更是构建智能化、自动化测试运营体系的关键一环。它代表着测试从“手工分析”向“智能理解”迈进的必由之路。未来,随着多模态能力、知识图谱融合、可解释性增强等技术的发展,LLM将在性能测试中扮演更加重要的角色,实现从“自动生成报告”到“智能定位瓶颈”、“自动提出优化建议”的全面智能化升级。以LLM为引擎,性能测试将不再只是验证,而是决策辅助与优化驱动的核心力量。原创 2025-07-05 00:15:00 · 908 阅读 · 0 评论 -
如何构建性能测试知识库?
性能测试不仅是技术能力的体现,更是工程化、资产化能力的延伸。而构建一套专业的性能测试知识库,是打造组织级测试能力、实现规模化测试的基石。它不仅承载经验、规范流程、提升质量,更让测试工作真正具备传承与演进能力。构建知识库从来不是一蹴而就,而是一次 系统性的战略工程。唯有从理念、体系、工具、流程、文化多维入手,才能构建真正“活着”的知识系统,助力企业在软件性能之路上行稳致远。原创 2025-07-04 00:15:00 · 739 阅读 · 0 评论 -
使用del删除字典项
在 Python 的字典(dict)操作中,删除键‑值对看似是一项简单的任务,却涉及哈希表的槽位管理、性能开销、并发安全,以及在测试、运维脚本和数据处理场景中的多种实践模式。del 语句是最直接的删除方式,掌握它的底层原理与最佳实践,能帮助我们编写更健壮、高效且易维护的代码。下面从基础用法、底层机制、性能分析、安全边界到高级技巧,全面剖析 “使用 del 删除字典项” 的方方面面。原创 2025-07-10 00:30:00 · 586 阅读 · 0 评论 -
dict的update()合并操作
在复杂系统中,字典(dict)不仅是数据存储与传递的载体,更是配置管理、缓存设计、合并策略等多种场景下的核心工具。Python 提供的 dict.update() 方法,看似简单地将一个映射合并到另一个映射,却蕴含着丰富的设计决策、性能特征与高级用法。深入理解 update() 操作,不仅能帮助我们优雅地处理配置覆盖、增量更新与数据聚合,更能启发如何在分布式系统、测试框架与运维脚本中设计安全、高效且可维护的合并策略。原创 2025-07-08 02:15:00 · 858 阅读 · 0 评论 -
使用in判断字典是否包含键
在 Python 的字典(dict)操作中,判断某个键是否存在,是保障程序正确性和可读性的第一步。直接使用 in 运算符进行键检测,简洁明了,性能优异,但其背后却蕴含着哈希表设计、迭代器协议和内存布局等深刻原理。本文将从基础用法出发,深入剖析 in 在字典中的实现机制、性能特征、安全边界,以及在软件测试、开发与运维自动化中的典型应用,帮助读者开阔眼界,耳目一新。原创 2025-07-09 00:30:00 · 1685 阅读 · 0 评论 -
使用get()安全读取键值
在 Python 的字典(dict)操作中,安全地读取键对应的值,是保证程序稳健性与可读性的关键一步。直接使用索引访问(my_dict[key])若键不存在即抛出 KeyError,往往导致意料之外的崩溃。而 dict.get(key[, default]) 方法,则提供了一种优雅且可靠的替代方案。本文将从基础用法出发,深入探讨 get() 的实现原理、性能特征、进阶模式以及在复杂場景下的最佳实践,启发读者在日常开发、测试与运维自动化中,更加游刃有余地使用这一利器。原创 2025-07-07 00:30:00 · 1415 阅读 · 0 评论 -
遍历字典的key、value与items
在 Python 中,字典(dict)不仅是存储键‑值对的高效数据结构,更以其灵活的遍历能力,成为开发、测试与运维中不可或缺的利器。遍历字典的三种常见方式——遍历键(key)、遍历值(value)、遍历项(items)——看似简单,却蕴藏着底层实现细节、性能考量与高级用法。深入理解与灵活运用这些遍历方式,能帮助我们写出更优雅、健壮且高效的代码。原创 2025-07-06 00:45:00 · 656 阅读 · 0 评论 -
增删改查字典中的键值对
在现代软件开发中,字典(Python中的dict)作为一种高效的键值对映射数据结构,承担着极为重要的角色。无论是配置管理、缓存实现,还是复杂的数据处理,字典都是不可或缺的工具。字典的核心操作——增加(增)、删除(删)、修改(改)和查询(查)——看似简单,却蕴含着丰富的设计哲学与技术细节。深入掌握这些操作,不仅能提升代码的健壮性和性能,更能开阔思路,帮助开发者设计出更高效、灵活的系统。本文将从增删改查的基本用法出发,结合Python字典的底层原理与高级技巧。原创 2025-07-05 01:00:00 · 1327 阅读 · 0 评论 -
字典(dict)创建方法详解
在现代编程语言中,字典(Dictionary)是一种非常重要且广泛使用的数据结构。它以键-值(key-value)对的形式存储数据,具有快速查找、动态增删的特性。Python中的dict是其典型实现,因其灵活性和高效性而备受开发者青睐。本文将从多个维度,深入探讨Python中字典的创建方法,解析其底层原理及应用场景,帮助读者不仅掌握使用技巧,更能洞察背后设计理念,从而提升编程能力与代码质量。原创 2025-07-04 00:30:00 · 798 阅读 · 0 评论 -
基于DeepSeek和crewAI构建测试用例脚本生成器
通常,在分工明确的测试团队中功能测试用例设计和测试用例脚本实现会分开实施,即测试用例设计人员要分析被测试需求内容,设计测试场景及编写测试用例,而自动化测试人员根据功能测试用例实现测试用例脚本代码。测试团队各类成员之间相互协作来完成不同测试任务,那么Agent之间是否也可以进行协作来完成测试任务呢?现在就给大家介绍一款使用简单、方便的多Agent协作工具crewAI。原创 2025-07-02 12:01:31 · 2279 阅读 · 1 评论 -
什么是知识图谱?一文带你入门“智能世界的地图”
在这个数据爆炸的时代,我们每天都在和各种信息打交道:搜索引擎、推荐系统、智能助手……你有没有想过,它们是怎么“理解”我们在说什么,又是怎么准确给出答案或建议的?答案之一,就是“知识图谱”。原创 2025-07-01 05:57:32 · 1120 阅读 · 0 评论 -
使用 zip() 压缩两个列表为元组
zip() 函数是一个看似简单却极富表现力的内建工具。它能将多个可迭代对象“压缩”成一个元组序列,使得多个数据结构之间形成结构化的配对关系。尤其是在将两个列表转换为由元组组成的新结构时,zip() 提供了既高效又优雅的方式,广泛应用于数据处理、测试建模、配置映射、参数绑定、矩阵操作等众多领域。原创 2025-07-03 01:00:00 · 778 阅读 · 0 评论 -
元组的解包技巧
元组(Tuple)解包 是一种极其强大而优雅的语言特性,它不仅能够提升代码的可读性与可维护性,更在函数调用、循环结构、数据交换、并行赋值、模式匹配等多个场景中发挥着不可替代的作用。可以说,元组解包技术代表着 Python 对“结构化思维”的高度支持,是实现简洁语义和函数式编程风格的关键手段之一。原创 2025-07-03 00:45:00 · 693 阅读 · 0 评论 -
嵌套列表与二维列表的遍历方法
在Python的世界中,列表(list)是最为基础而强大的数据结构之一。而当一个列表的元素本身又是列表时,我们便进入了嵌套列表(Nested List)或更通用的二维列表(2D List)的语境中。无论是在软件开发、测试数据构造、数据分析、机器学习、自动化运维还是教育教学场景中,嵌套结构的遍历与处理都是工程能力的一项基本功。原创 2025-07-02 00:45:00 · 618 阅读 · 0 评论 -
使用列表推导式快速创建新列表
在Python语言设计哲学中,“简洁优雅”被奉为核心准则。作为这一理念的代表性语法结构,列表推导式(List Comprehension)不仅提升了代码的可读性,也极大增强了开发效率与表达能力。它以一种声明式、函数式的方式,优雅地解决了列表构造与转换的问题,深受开发、测试、运维、数据科学等多个领域的工程师青睐。原创 2025-07-01 00:45:00 · 861 阅读 · 0 评论 -
列表反转:reverse() 方法的深度剖析
在对列表(list)这一核心数据结构的操作中,反转(reversing)是一项既常用又容易被低估的重要操作。Python提供了原地反转的reverse()方法,与返回新序列的切片[::-1]或内置函数reversed()形成了鲜明对比。本文将全面剖析 list.reverse() 方法,从其语义、实现机制、适用场景,到其在测试、开发与自动化中的实际运用,力求为读者提供一个专业而深入的视角,使之不再只是一个简单的“反转”工具,而是一种构建稳定、高效、优雅代码的利器。原创 2025-06-30 00:45:00 · 563 阅读 · 0 评论 -
如何提取配置文件中的特定参数?用 awk 来做!
面对千变万化的配置格式,使用传统文本编辑工具效率低且易出错。而Unix/Linux下的awk工具,作为一种强大的文本处理语言,凭借其字段分割、模式匹配与条件处理的能力,成为提取配置参数的利器。本文将围绕awk实现配置文件参数提取,深入讲解技巧和实战方法,助你从容应对复杂配置解析需求。原创 2025-07-03 00:30:00 · 228 阅读 · 0 评论 -
Linux 文件替换神器:用 sed 实现批量修改
Linux中的sed(stream editor)作为一种强大的文本流编辑工具,不仅能完成单文件的替换任务,更能通过脚本与管道,实现批量文件的自动化高效修改,成为真正意义上的“文件替换神器”。本文将深入解读sed的批量替换原理、关键用法及实战技巧,帮助你从“笨拙的人工编辑”跃升为“自动化文本替换高手”。原创 2025-07-03 00:30:00 · 532 阅读 · 0 评论 -
快速统计行数、字数、字符数:wc 命令用法详解
在软件开发、测试、运维以及数据处理领域,文本文件的快速统计是日常工作中的基础操作。无论是统计日志文件行数,确认数据文件大小,还是预览代码文件规模,Linux/Unix环境下的wc(word count)命令,都以其轻量高效、功能丰富而成为首选工具。本文将全面解析wc命令的核心用法、高级技巧及实践案例,帮助读者构建对文本统计的全面认知,真正做到“用好工具,事半功倍”。原创 2025-07-02 00:30:00 · 721 阅读 · 0 评论 -
用 diff 和 vimdiff 快速比对两个配置文件差异
借助命令行工具diff和交互式工具vimdiff,可以快速精准地定位差异,实现高效的版本审查和变更管理。本文将系统剖析diff与vimdiff的原理、高级用法及实战案例,帮助你掌握快速比对配置文件的技巧,开拓配置管理新视角。原创 2025-07-01 00:30:00 · 925 阅读 · 0 评论 -
tail -f + grep:打造属于你的实时日志监控命令
如何实现实时、精准且高效的日志监控,是每个工程师的刚需。基于Unix哲学,“小工具组合”是解决方案的核心——其中,tail -f与grep的组合,成为最简单却又最有效的实时日志监控命令。本文将全面解析tail -f + grep命令的用法,深入探讨其原理、实战技巧和优化思路,助你打造专属的高效实时日志监控体系。原创 2025-06-30 00:30:00 · 753 阅读 · 0 评论 -
列表排序:sort() vs sorted() 深度解析与实战指南
sort()与sorted()并非简单的语法选择,而是代码设计哲学的体现。前者强调效率和控制,后者强调函数式和安全性。理解并合理选择它们,不仅能提升代码质量,也体现出一个工程师对语言精髓的掌握。当你下一次写下 data.sort() 或 sorted(data) 之时,不妨再多想一秒:你更看重原地效率,还是函数式优雅?这或许就是代码之美的微妙之处。原创 2025-06-29 00:30:00 · 772 阅读 · 0 评论 -
文本处理三剑客:cut、awk、sed 高阶用法示例
cut、awk、sed作为经典文本处理工具,各有千秋。它们从简洁的字段提取,到复杂的文本替换与逻辑判断,构成了Unix文本处理的坚实基石。 cut:轻量快速,适合定界简单字段抽取 awk:逻辑强大,适合复杂计算与条件过滤 sed:文本流编辑,擅长自动化替换与批量修改掌握它们的高阶用法,能显著提升文本数据的处理效率和质量,使你在开发、测试、运维乃至数据分析中如虎添翼。原创 2025-06-29 00:30:00 · 567 阅读 · 0 评论 -
grep 命令全解析:从日志中高效提取关键信息
grep不仅是Linux/Unix系统下的经典命令,更是一种高效的文本处理思想的代表。本文将全面解析grep命令的强大功能,深入剖析其在日志分析中的实战应用,帮助你从“盲目翻日志”迈向“精准取证”。原创 2025-06-28 00:30:00 · 1516 阅读 · 0 评论 -
使用 count() 与 index() 查找元素
在 Python 的数据结构中,列表(list)是一种极其灵活而又功能强大的有序容器。在列表操作中,查找某个元素出现的次数或首次出现的位置,是日常数据处理、模式识别、算法开发中非常常见的需求。Python 提供了两个直观且高效的内建方法:count() 和 index(),分别用于统计元素出现的次数以及定位元素的索引位置。原创 2025-06-28 01:00:00 · 1397 阅读 · 0 评论 -
云原生架构下的性能测试策略调整与思考
本文将深入剖析云原生架构带来的变化,探讨性能测试在理念、策略、工具与实践层面的系统性调整,助力企业在云原生转型中实现更高质量、更稳定、更敏捷的交付保障。原创 2025-06-30 00:45:00 · 974 阅读 · 0 评论 -
在 DevOps 流程中集成性能基准测试
性能基准测试(Performance Benchmark Testing)是以规范化、可重复的方式,持续衡量系统在特定负载下的响应能力与资源利用水平,是预防性能回退的“金标准”。本文将深入探讨如何在DevOps流程中有效集成性能基准测试,确保每次交付不仅“功能正确”,更“性能稳定”。原创 2025-06-29 00:30:00 · 883 阅读 · 0 评论 -
性能测试常见指标与瓶颈分析方法
本文将围绕性能测试的核心指标展开,深入解析这些指标背后反映的系统行为,并结合实战经验,提供科学有效的瓶颈定位与性能优化方法。无论你是测试工程师、开发人员还是运维专家,本文都将帮助你构建起一套系统性思维模型,为性能保障提供理论与实践支持。原创 2025-06-28 00:15:00 · 692 阅读 · 0 评论 -
性能测试与容量规划的关系解读
性能测试和容量规划不是彼此割裂的孤岛,而应是协同驱动系统健康运行的双轮。性能测试为容量规划提供精准的技术度量,容量规划为性能测试指明业务增长的方向。在高可用、强扩展的系统设计之路上,唯有深度融合性能测试与容量规划,才能真正实现“以测促稳”、“以策控耗”、“以智赢需”。对于现代软件工程实践者而言,这是理解系统能力、预判系统风险、优化系统资源的必修课。原创 2025-06-27 00:30:00 · 785 阅读 · 0 评论 -
测试人员如何用好RAG
测试人员如何用好RAG,归根结底是对自身测试知识结构的认知升级与工作方式的范式转变。RAG不是一个“工具”,而是一个让测试人员从“手工验证”向“智能驱动”的跃迁桥梁。未来的测试专家,不仅要会写脚本、建平台,更要掌握如何“让AI知道我知道什么”,这正是RAG赋予测试人员的新智慧。原创 2025-06-26 05:28:00 · 725 阅读 · 0 评论 -
使用 in 判断元素是否存在:语义表达与性能优化的深度剖析
在 Python 编程中,in 关键字可谓“常用得不能再常用”。它简洁、直观,是判断元素是否存在于容器中的首选方式。初学者喜欢它的易读性,资深开发者则依赖其在集合操作、数据过滤、流程控制等方面的强大表达力。然而,若不深入理解 in 背后的语义逻辑与性能机制,极易在大型数据处理或系统开发中埋下性能隐患与语义歧义。原创 2025-06-27 01:00:00 · 678 阅读 · 0 评论 -
使用 del 删除指定元素或整个列表
从单个元素到整个列表,从内存控制到变量管理,del 提供了比表层方法更直接、更强大的能力。理解其行为和使用边界,不仅能帮助你写出性能更优的代码,还能构建对 Python 内部机制更深层次的认知。 掌握 del,意味着你拥有了语言级别的精细控制能力。它不仅是删除的工具,更是结构清晰、资源有序、行为可控的体现。原创 2025-06-28 00:45:00 · 764 阅读 · 0 评论 -
使用 pop() 弹出元素
pop() 并非只是删除元素的方法,更是控制数据流动性、实现算法结构、维护状态一致性的重要工具。深入理解它的行为、限制与边界,能让开发者编写出更高效、更具表达力的代码。 在处理数据结构时,掌握对“入”与“出”的精准控制,是构建优雅系统的核心能力。pop() 只是一个起点,它教会我们如何在变化中掌握主动。原创 2025-06-26 00:45:00 · 620 阅读 · 0 评论 -
insert() 与 remove() 的区别与使用
掌握 insert() 和 remove(),不仅意味着能在列表中添加或删除元素,更代表你具备了对数据结构进行双向控制的能力。这种能力在系统设计、数据清洗、流程编排中具有极高的价值。通过深入理解它们的行为模式、潜在陷阱与设计哲学,我们不仅能写出更安全的 Python 代码,更能编写出逻辑清晰、行为可预测、结构优雅的高质量程序。原创 2025-06-25 00:30:00 · 904 阅读 · 0 评论