
性能测试
文章平均质量分 89
测试者家园
于涌,知名技术专家和专业图书作者。作为技术专家,曾在多家互联网企业担任技术总监岗位,积累了丰富的实战和管理经验。作为知名图书作者,创作了十余本专业著作,紧跟时代步伐,关注和探索前沿技术的落地与实践,多次获得优秀原创IT图书作者和最受欢迎的IT类图书作者等荣誉。曾为多家企业提供软件测试相关课程、敏捷开发、ChatGPT、AIGC和项目管理等内容的培训和咨询服务。致力于为企业提供实用的技术指导和应用,为读者提供深入并易于理解的知识分享,以促进企业的创新和读者的个人职业发展。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
性能测试人员职业发展路径探讨
性能测试人员如何突破天花板?路径在哪里?天赋与能力要求是什么?这正是本文试图深入探讨的核心问题。原创 2025-07-08 06:24:27 · 1009 阅读 · 0 评论 -
性能测试与 DevOps 的集成策略
将性能测试真正纳入 DevOps,是一项系统性工程,而非脚本插入。它需要从测试策略、架构设计、工具链集成、指标治理、治理机制五个层面协同推进。原创 2025-07-10 00:15:00 · 576 阅读 · 0 评论 -
事件驱动架构的性能测试思路
传统“请求-响应”的性能测试策略,已不足以胜任事件驱动架构下的性能验证需求。本文将系统性地拆解事件驱动架构的性能测试思路,从理论模型到实战策略,帮助测试工程师全面适配“事件化”的系统形态。原创 2025-07-09 00:15:00 · 1098 阅读 · 0 评论 -
低代码平台的性能测试实践与挑战
近年来,低代码平台(Low-Code Platform)正在快速改变企业软件开发方式。Gartner 预测,到 2025 年,超过 70% 的应用开发将基于低代码或无代码技术。通过“拖拉拽建模 + 图形化逻辑 + 一键发布”,企业大幅缩短了从需求到交付的周期,实现了真正的“业务人员可编程”。原创 2025-07-08 00:15:00 · 1099 阅读 · 0 评论 -
如何构建用户行为模拟的性能场景?
现实中,系统承载的不是孤立的 API,而是复杂、动态、连续的用户行为链路。用户打开 App、浏览首页、搜索商品、查看详情、加入购物车、下单支付……这些行为交织成真实的业务负载模型,也正是性能场景构建的核心对象。构建用户行为模拟的性能场景(User Behavior Simulation Performance Scenario),是性能工程从“压接口”向“压业务”的一次质变,是支撑容量评估、稳定性保障和体验优化的关键路径。原创 2025-07-07 00:15:00 · 2625 阅读 · 0 评论 -
用例参数化在性能测试中的实现方式
用例参数化,在性能测试中承载着还原真实业务环境和拓展场景覆盖能力的核心使命。其质量,决定了测试数据的多样性、覆盖的全面性和结果的真实性。无论是工具层面的技术实现,还是工程实践中的策略选择,参数化已成为每一位性能测试工程师不可或缺的能力。它是“从脚本驱动转向数据驱动,再到行为驱动”的重要桥梁。在智能化测试浪潮中,参数化能力正在与 AI 模拟用户、流量回放、数据池管理等技术融合,共同构建新一代性能测试平台的基石。掌握它,才能真正站上性能工程的技术高地。原创 2025-07-06 00:15:00 · 782 阅读 · 0 评论 -
用 LLM 辅助性能测试报告生成
借助 LLM 技术生成性能测试报告,不仅仅是提高效率的手段,更是构建智能化、自动化测试运营体系的关键一环。它代表着测试从“手工分析”向“智能理解”迈进的必由之路。未来,随着多模态能力、知识图谱融合、可解释性增强等技术的发展,LLM将在性能测试中扮演更加重要的角色,实现从“自动生成报告”到“智能定位瓶颈”、“自动提出优化建议”的全面智能化升级。以LLM为引擎,性能测试将不再只是验证,而是决策辅助与优化驱动的核心力量。原创 2025-07-05 00:15:00 · 908 阅读 · 0 评论 -
如何构建性能测试知识库?
性能测试不仅是技术能力的体现,更是工程化、资产化能力的延伸。而构建一套专业的性能测试知识库,是打造组织级测试能力、实现规模化测试的基石。它不仅承载经验、规范流程、提升质量,更让测试工作真正具备传承与演进能力。构建知识库从来不是一蹴而就,而是一次 系统性的战略工程。唯有从理念、体系、工具、流程、文化多维入手,才能构建真正“活着”的知识系统,助力企业在软件性能之路上行稳致远。原创 2025-07-04 00:15:00 · 739 阅读 · 0 评论 -
云原生架构下的性能测试策略调整与思考
本文将深入剖析云原生架构带来的变化,探讨性能测试在理念、策略、工具与实践层面的系统性调整,助力企业在云原生转型中实现更高质量、更稳定、更敏捷的交付保障。原创 2025-06-30 00:45:00 · 974 阅读 · 0 评论 -
在 DevOps 流程中集成性能基准测试
性能基准测试(Performance Benchmark Testing)是以规范化、可重复的方式,持续衡量系统在特定负载下的响应能力与资源利用水平,是预防性能回退的“金标准”。本文将深入探讨如何在DevOps流程中有效集成性能基准测试,确保每次交付不仅“功能正确”,更“性能稳定”。原创 2025-06-29 00:30:00 · 883 阅读 · 0 评论 -
性能测试常见指标与瓶颈分析方法
本文将围绕性能测试的核心指标展开,深入解析这些指标背后反映的系统行为,并结合实战经验,提供科学有效的瓶颈定位与性能优化方法。无论你是测试工程师、开发人员还是运维专家,本文都将帮助你构建起一套系统性思维模型,为性能保障提供理论与实践支持。原创 2025-06-28 00:15:00 · 692 阅读 · 0 评论 -
性能测试与容量规划的关系解读
性能测试和容量规划不是彼此割裂的孤岛,而应是协同驱动系统健康运行的双轮。性能测试为容量规划提供精准的技术度量,容量规划为性能测试指明业务增长的方向。在高可用、强扩展的系统设计之路上,唯有深度融合性能测试与容量规划,才能真正实现“以测促稳”、“以策控耗”、“以智赢需”。对于现代软件工程实践者而言,这是理解系统能力、预判系统风险、优化系统资源的必修课。原创 2025-06-27 00:30:00 · 785 阅读 · 0 评论 -
JMeter中变量如何使用?
在性能测试的世界中,Apache JMeter是一把利器,凭借其强大的可扩展性与图形化操作界面,在工业界和开源社区中广受青睐。而“变量的使用”作为JMeter中提高测试灵活性、可维护性和复用性的关键技术点,却常常被初学者忽略或误用。本文将从变量的定义方式、作用域、典型应用场景到高级技巧全面展开剖析,并结合实际案例为读者提供具有启发性的思维视角。原创 2025-06-25 09:58:43 · 931 阅读 · 0 评论 -
AI助力JMeter—从静态参数化到智能动态化的进化之路
Apache JMeter作为开源利器被广泛应用于Web系统、API接口、数据库及消息队列等多场景性能验证。而“变量的使用”作为测试脚本灵活性和可维护性的核心手段,决定了脚本的复用性、可扩展性和数据驱动能力。传统的变量管理手段已难以应对大规模复杂测试任务中“动态化、智能化、多维依赖”的挑战。本文将从JMeter变量使用的技术基础出发,深入剖析AI如何赋能变量生成、管理、调试与优化,全面提升测试工程的智能化水平,助力企业构建下一代智能性能测试体系。原创 2025-06-24 09:13:50 · 907 阅读 · 0 评论 -
API网关性能测试与瓶颈定位:微服务世界的守门人之道
在现代微服务架构中,API网关(API Gateway)是所有外部请求进入系统的第一道关口,是服务路由、协议转换、安全认证、流量管控、熔断限流等功能的集中体现。它既是安全屏障,又是性能瓶颈的高发区。性能测试中,我们经常会遇到这样的现象: 压测明明只是调用了某个后端服务,却出现网关CPU飙升; 明明业务接口很轻量,响应时间却在网关端延迟显著; 大促场景下网关吞吐变慢、QPS波动大,甚至雪崩。这些问题暴露出:API网关不仅是服务入口,更是性能压力放大器和系统稳定性试金石。原创 2025-06-01 00:15:00 · 943 阅读 · 0 评论 -
实时流处理系统的性能压测技巧
在传统系统中,我们关心的是系统在离线批处理或HTTP请求响应模型下的性能表现,如每秒处理的事务数(TPS)、响应时间等。但进入 实时流处理(Real-Time Stream Processing) 的领域,一切变得不同: 数据源是持续不断的无限数据流; 数据处理是低延迟、窗口化、状态化; 系统需应对突发洪峰流量(burst traffic)与资源抖动; 性能表现与吞吐(Throughput)、延迟(Latency)、窗口语义、状态一致性高度耦合。原创 2025-05-31 00:45:00 · 941 阅读 · 0 评论 -
性能测试工具选型指南
在数字化转型背景下,性能测试工具的选择直接影响系统稳定性与用户体验。本文系统梳理了性能测试工具五大类型(负载生成型、浏览器模拟型、云原生平台等)及其适用场景,提出选型五大核心维度:业务匹配度、扩展性、资源效率、数据分析能力和成本考量。文章强调应基于业务目标进行POC验证,关注工具对云原生和AI技术的支持,建议通过自然语言驱动、智能脚本生成等前沿技术提升测试效率。性能测试工具选型需综合技术、业务和团队因素,采取系统化决策路径,最终实现从人工测试向智能驱动的转型升级。(149字原创 2025-05-30 00:15:00 · 731 阅读 · 0 评论 -
什么是反压测试
在系统性能测试的语境中,我们经常讨论“压测”——即向系统施加负载,观察其在高压下的行为。但你是否曾反向思考过:当系统下游承载能力达到极限甚至崩溃时,上游系统是否具备感知能力?是否能自动减速、缓存、丢弃或者报警?这正是“反压测试”(Backpressure Testing)所关注的核心。反压测试不仅仅是一种测试方法,更是一种系统思维方式——它考察的不只是性能的强度,而是系统对极端流量状态的韧性和弹性机制。这是现代实时系统、流处理平台以及微服务架构中必须面对的严峻挑战。原创 2025-05-31 00:15:00 · 1708 阅读 · 0 评论 -
性能测试脚本的参数化与关联
在性能测试中,脚本开发往往是最基础的一环。然而,很多初学者甚至部分从业者误以为“脚本录制成功、能跑通”就等同于“性能测试准备就绪”。事实上,性能测试的可信度和可复现性,取决于脚本是否具备灵活性、可维护性和贴近真实业务逻辑的能力。而这三点的实现,离不开两个核心技术手段——参数化与关联。原创 2025-05-23 09:28:40 · 512 阅读 · 0 评论 -
构建系统性性能诊断思维
真正具备高水平性能调优能力的工程师,必须具备“分层定位”的系统思维:从现象到本质,从表象指标到根因数据,从代码调用到硬件瓶颈。原创 2025-05-27 03:15:00 · 2219 阅读 · 0 评论 -
性能瓶颈指标的量化与验证:从感知到证据的进阶之路
在现代分布式系统中,性能瓶颈往往成为影响用户体验、系统稳定性和成本效能的隐形杀手。如何识别、量化并验证性能瓶颈,不仅关乎系统的优化能力,更体现团队对系统本质理解的深度。本文将围绕“性能瓶颈指标的量化与验证”这一核心议题,从工程实战出发,系统剖析关键概念、方法论与实操框架,助力读者构建对性能问题的科学认知体系。原创 2025-05-27 00:30:00 · 718 阅读 · 0 评论 -
性能优化的成本与收益分析:理性调优的价值杠杆
在技术圈中,“性能优化”几乎是永恒的话题。从前端页面加载速度到后端微服务响应时间,从SQL优化到JVM调优,开发者常陷入性能提升的“技术兴奋剂”。但一个问题始终被忽视:我们是否真正理解性能优化的成本和收益?性能优化明确其投入与产出,才能做出理性、可持续的工程决策。本文将从多个维度系统分析性能优化的经济学价值,帮助开发者、测试者及架构师建立一套科学、务实的性能优化思维框架。原创 2025-05-26 01:15:00 · 2037 阅读 · 0 评论 -
架构意识与性能智慧的双重修炼
“架构决定上限,调优决定下限。”性能调优从不是简单的代码打磨和硬件升级,而是深入理解架构内核、精准诊断瓶颈、有策略地局部优化。在多样化系统架构(单体、微服务、Serverless、分布式、事件驱动等)广泛应用的今天,性能调优已不再是通用模板式处理,而是一项极度依赖“架构意识”的高级工程艺术。原创 2025-05-25 02:45:00 · 1074 阅读 · 0 评论 -
如何排查慢响应的原因:透视性能瓶颈的本质
在软件测试中如何系统、科学地识别和解决“慢响应”问题。首先,文章强调了慢响应的多层面性,可能源于前端、网络、服务端、数据库或系统资源等多个环节。接着,提出了“五层排查模型”作为分析框架,包括用户侧性能、网络传输、服务端处理、数据库/缓存层和系统资源与外部依赖。文章详细分析了每一层可能的问题和相应的排查工具,如Chrome DevTools、Wireshark、APM工具等。最后,文章强调了构建可观测性基础设施的重要性,以便快速定位问题、分析原因并优化系统。原创 2025-05-25 00:15:00 · 1686 阅读 · 0 评论 -
性能测试用例设计方法
本文探讨了系统性能测试中的关键问题,提出了一套科学、系统化的性能测试用例设计方法论。文章首先指出,许多技术团队在性能测试中缺乏结构化设计思维,导致测试数据孤立、目标不明确等问题。接着,文章阐述了性能测试的本质是对非功能性目标的验证,并提出了性能测试用例的五层结构模型,包括目标层、场景层、负载层、数据层和度量层。此外,文章还介绍了五种典型的性能测试用例类型及其设计策略,并探讨了如何通过引入AI与自动化技术来智能化地生成和优化测试用例。最后,通过一个大型电商系统的性能测试案例,展示了该方法论的实际应用效果。文章原创 2025-05-24 02:15:00 · 1372 阅读 · 0 评论 -
性能测试、压力测试、负载测试如何区分
在软件开发与测试中,性能测试、压力测试和负载测试常被混用,但它们的目标、方法和结果分析有本质区别。性能测试关注系统在正常条件下的表现,如响应时间和资源消耗;负载测试验证系统在设计最大业务负载下的稳定性;压力测试则挑战系统的极限,检验其容错和恢复能力。正确区分和使用这三种测试对于精确定位系统瓶颈、评估架构容量边界和预测系统极限行为至关重要。随着技术的发展,性能测试正朝着智能化、自动化方向发展,利用AI辅助生成测试场景、识别资源瓶颈和进行容灾测试。理解并善用这三种测试是提升系统稳定性和可靠性的关键。原创 2025-05-23 00:15:00 · 1004 阅读 · 0 评论 -
如何定义性能测试的SLA指标
性能测试中的SLA(服务级别协议)是确保系统性能达标的关键工具,它定义了系统在响应时间、吞吐量、并发数、资源利用率和稳定性等方面的明确目标。SLA不仅是技术团队与业务方之间的契约,也是提升用户体验和系统可靠性的基础。制定有效的SLA需要明确业务目标、调研历史数据、设定目标阈值、编写文档并与干系人达成共识,最后将SLA转化为可自动评估的测试断言。不同系统类型的SLA策略应有所差异,避免常见误区,如仅关注平均响应时间或忽视系统架构变化。SLA的战略价值在于它作为用户体验的底线、技术架构演进的标尺、团队协作的共识原创 2025-05-22 00:15:00 · 976 阅读 · 0 评论 -
详解CPU用户态与内核态
文章深入探讨了CPU用户态与内核态的切换机制,这是现代操作系统安全、稳定和高性能设计的核心。用户态程序运行在受限的非特权模式下,无法直接访问硬件或执行特权指令,而内核态则拥有对系统资源的完全访问权限。两者之间的切换通过系统调用、中断与异常、系统调度等方式实现,确保了系统的安全隔离、控制复杂性和性能权衡。文章还介绍了io_uring、eBPF等前沿技术,这些技术挑战了传统态边界,在安全与性能之间寻求新平衡。对于开发者和测试人员,理解用户态与内核态的机制有助于优化系统性能、定位瓶颈并提升系统鲁棒性。总之,用户态原创 2025-05-21 01:00:00 · 1884 阅读 · 0 评论 -
基于大模型的性能瓶颈自动识别
大模型为性能瓶颈自动识别注入了智能引擎,是运维智能化、自动化的关键突破口。面对复杂多变的系统环境,唯有依托AI,才能解放人力、提升效率、保障系统性能的持续健康。拥抱大模型技术,积极探索性能智能分析,是我们共同的时代使命和发展机遇。原创 2025-05-20 02:45:00 · 982 阅读 · 0 评论 -
Python 垃圾回收机制全解析:内存释放与优化
Python 的垃圾回收机制为开发者提供了强大的自动内存管理能力,减少了开发者对内存管理的关注。然而,这并不意味着可以忽视内存回收和优化。了解 Python 垃圾回收的原理和机制,掌握内存优化技巧,将有助于开发高效、稳定的应用程序。垃圾回收机制不仅仅是一个工具,它是理解程序性能、设计高效系统和解决复杂问题的关键。希望本文的深入解析能为你开启新的思维方式,并启发你在开发中更加关注内存管理与优化,为代码性能提升提供思路和工具。原创 2025-04-16 00:15:00 · 755 阅读 · 0 评论 -
Docker 监控神器 Prometheus + Grafana,简单 5 步搞定!
Docker Compose 是一个工具,用来定义和管理多个 Docker 容器。对于 Windows 用户,Docker Desktop 已经内置了 Docker Compose,因此不需要单独安装。如果返回 Docker Compose 的版本号,说明它已经安装成功。安装 Docker 和 Docker Compose。如果你能看到 Docker 版本信息,说明安装成功。:Docker 容器监控工具(监听端口:8080)。,你就可以看到 Docker 容器的监控数据图表了!原创 2025-03-29 22:24:16 · 1111 阅读 · 0 评论 -
Python 处理大文件技巧
设计合理的 I/O 策略控制内存峰值提升并发并行能力结合外部存储优化架构大文件处理,绝不仅仅是“写个循环”这么简单,而是考验架构能力和工程思维。原创 2025-03-22 08:11:53 · 823 阅读 · 0 评论 -
AI生成性能测试模型:告别繁琐设计
性能测试作为软件质量保障的“最后一道防线”,正在迎来颠覆性变革。AI不再是辅助工具,而正成为性能模型设计的核心驱动力让性能测试更简单、更智能、更精准降低性能测试门槛,赋能开发、测试、运维全员参与性能保障实现从“被动检测”到“主动预防”的质量跃升未来,性能测试场景设计不再是“费时费力的痛点”,而是AI赋能下的“轻量、智能、实时”的新体验。原创 2025-03-22 07:55:04 · 879 阅读 · 0 评论 -
性能测试的常见问题
性能测试不是孤立的技术活动,而是贯穿软件生命周期的系统工程。从明确目标到工具选型,从环境治理到团队协作,每一个环节的疏漏都可能引发连锁反应。只有以业务价值为导向,结合自动化、数据驱动和持续改进的方法论,才能将性能风险转化为竞争优势。在数字化转型加速的今天,构建“性能左移”的研发文化,或许是企业跨越技术鸿沟的关键一步。原创 2025-02-09 09:13:31 · 690 阅读 · 0 评论 -
JMeter + Grafana +InfluxDB性能监控
通过JMeter、Grafana 和 InfluxDB来搭建一个炫酷的基于JMeter测试数据的性能测试监控平台。原创 2025-01-19 09:00:00 · 1092 阅读 · 0 评论 -
负载测试工具的选择与性能分析
本文将从负载测试工具的选择原则、各类工具的特点以及性能分析的技术方法等方面进行深度探讨,力求为广大技术人员提供一份有价值的参考,帮助大家在实际工作中更好地开展负载测试并进行性能优化。原创 2025-01-18 11:30:00 · 1031 阅读 · 0 评论 -
用Portainer实现对Docker容器的管理(四)
用Portainer实现对Docker容器的管理(四)原创 2025-01-06 11:15:00 · 777 阅读 · 0 评论 -
应用Docker快速实现 JMeter + InfluxDB + Grafana 监控方案
应用Docker快速实现 JMeter + InfluxDB + Grafana 监控方案原创 2025-01-04 10:45:00 · 1187 阅读 · 0 评论 -
JMeter 监控图表也可以非常炫目
大家不难发现JMeter提供的图表略显丑陋,那么有没有可能让JMeter产出炫酷的图表呢?原创 2025-01-03 11:15:00 · 264 阅读 · 0 评论 -
JMeter + Grafana +InfluxDB性能监控 (二)
JMeter + Grafana +InfluxDB性能监控 (二)原创 2025-01-03 07:05:37 · 1666 阅读 · 0 评论