大模型微调训练系列(一) LoRA
一、大模型微调简介
大模型微调(Fine-tuning)是指在预训练模型的基础上,通过特定任务的数据进一步训练,使其适应具体任务需求。
1.1 LoRA微调
LoRA(Low-Rank Adaptation)是一种高效的大模型微调方法,旨在通过低秩分解技术减少微调参数,从而降低计算和存储开销。
其核心思想是在预训练模型的权重矩阵中引入低秩分解,通过优化低秩矩阵来适应特定任务,而不是直接调整整个模型的参数。
LoRA通过低秩分解技术,高效地微调大模型,显著减少了参数量和计算成本,同时保持了模型性能。它特别适合资源有限或需要快速适配的场景,是大模型微调中的一种重要方法。
打个比喻来解释 LoRA微调 的原理:想象你有一辆已经造好的汽车(预训练模型),它可以在各种路况下行驶(通用任务)。现在你需要让这辆车适应一种特殊的路况,比如沙漠(特定任务)。
一种模式是全模型微调:重新造车
如果你选择全模型微调,就相当于把整辆车拆开,重新调整每一个零件(模型参数),甚至可能更换发动机。这非常耗时耗力(计算资源大),而且如果沙漠路况数据不多,可能会导致车子在其他路况上表现变差(过拟合)。
另一种方式是LoRA微调:加装一个沙漠专用配件
LoRA微调则像给车子加装一个沙漠专用配件(低秩矩阵 A和B)。这个配件很小,安装方便(参数量少),但它能让车子在沙漠中行驶得更好。
你不需要改动车子的核心结构(冻结预训练权重),只需要训练这个配件(优化低秩矩阵)。车子在其他路况上的性能也不会受到影响。
为什么LoRA更高效? 配件轻便:沙漠专用配件只占车子