大模型训练及评估可视化工具wandb入门指南

一、wandb简介

       wandb几乎可以实现tensorboard所有的功能,可以方便的管理实验数据。同时实验数据会实时上传到云端,数据管理和审核非常方便。并且还能清楚的看到cpu,gpu等实时设备信息。

二、入门教程

2.1 账号注册

第一次使用要现在官网官网上注册账号.(我是使用的 GitHub 账号登录的)。

在注册完成后,你会得到一个 wandb 的 token,将这个 token 记录保存到你的云笔记里面。然后在终端的输入框中输入这个 token 即可。

2.2 登录账号

打开windows命令行。输入wandb login。将在浏览器中显示的验证码输入进验证框中即完成登录。注意把token复制完整。

2.3 代码测试
import wandb
import random

# start a new wandb run to track this script
wandb.init(
    # set the wandb project where this run will be logged
    project="my-awesome-project",

    # track hyperparameters and run metadata
    config={
    "learning_rate": 0.02,
    "architecture": "CNN",
    "dataset": "CIFAR-100",
    "epochs": 10,
    }
)

# simulate training
epochs = 10
offset = random.random() / 5
for epoch in range(2, epochs):
    acc = 1 - 2 ** -epoch - random.random() / epoch - offset
    loss = 2 ** -epoch + random.random() / epoch + offset

    # log metrics to wandb
    wandb.log({"acc": acc, "loss": loss})

# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
2.4 效果展示

点击下方链接,即可进入官网上自己的控制台中。

2.5 官网链接

感兴趣的朋友可以访问wandb官方文档获取更多使用教程。

### 关于 UnSloth 和 WandB使用指南和集成方法 UnSloth 是一个专注于提升机器学习实验管理效率的工具,而WandB (Weights and Biases) 则是一个广泛使用的平台,旨在帮助开发者跟踪模型训练过程、版本控制超参数以及可视化指标变化情况。 #### UnSloth 特性概述 UnSloth 提供了一系列功能来简化机器学习项目的开发流程。其特性包括但不限于: - **自动化日志记录**:自动捕获代码执行期间的关键事件并保存至云端存储。 - **环境配置同步**:确保不同计算节点间的一致性,减少因环境差异带来的问题。 - **协作支持**:允许多名研究人员共享项目进展,并通过评论机制促进团队沟通。 对于具体的安装与配置指导,请参照官方文档获取最新信息[^1]。 #### WandB 功能介绍 WandB 平台提供了丰富的特性和接口,使得用户能够更高效地管理和优化自己的深度学习工作流: - **实时监控面板**:提供直观易懂的数据展示界面,便于观察损失函数下降趋势等重要性能指标。 - **API 接口开放**:允许第三方应用程序接入,从而实现更加灵活的功能定制和服务对接。 - **社区资源共享**:拥有活跃的技术交流社群,在这里可以找到大量实用技巧分享和技术难题解答资源。 有关如何快速入门及深入理解该产品的更多信息,请访问官方网站查阅详细的教程资料[^2]。 #### 集成方案建议 为了使这两个强大的工具更好地协同工作,可以从以下几个角度考虑它们之间的集成方式: - **统一的日志管理体系**:利用 UnSloth 自动化的日志收集能力配合 WandB 强大的数据分析视图,构建起一套完整的实验追踪体系。 ```python import unsloth as us from wandb import init, log def train_model(): run = init(project="my_project", entity="entity_name") # 初始化wandb会话 with us.Session() as session: # 启动unsloth会话 for epoch in range(num_epochs): loss_value = model.train_step() # 记录到unsloth的同时也发送给wandb session.log({"loss": loss_value}) log({"epoch_loss": loss_value}) # 发送数据到wandb run.finish() # 结束wandb会话 ``` - **联合部署策略**:基于两者各自的优势领域制定合理的分工计划,比如让 UnSloth 负责前期准备阶段的任务调度,而在后期评估环节则更多依赖于 WandB 所提供的高级分析工具来进行效果对比分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值