1. 一幅图像可定义为一个二维函数f(x,y),这里x和y是空间坐标,而在任何一对空间坐标(x,y)上的幅值f称为该点图像的强度或灰度。当x,y和幅值f为有限的、离散的数值是,称该图像为数字图像。
2. 对于任何一组给定条件,视觉系统当前的灵敏度级别叫做亮度适应级。
3. 没有颜色的光叫消色或单色光。这种光的属性是它的强度或大小。
4. 灰度级通常用来描述单色光强度,因为它的范围从黑到灰,最后到白。
5. 通常有三个基本量用于描述彩色光源的质量:发光强度、光通量和亮度。
6. 发光强度是从光源流出能量的总量,通常用瓦特度量。
7. 流明数度量的光通量给出观察者从光源感受到的能量。
8. 函数f(x,y)可由两个分量来表征:(1)入射到观察场景的光源总量和(2)场景中物体反射光的总量。相应的称为入射分量和反射分量,并分别表示为i(x,y)和r(x,y).两个函数合并形成f(x,y):f(x,y)=i(x,y)r(x,y)。这里0<i(x,y)< ∞,0<r(x,y)<1;0表示全吸收,1表示全反射。I(x,y)的性质取决于照射源,而r(x,y)取决于成像物体的特征。
9. 单色图像在任何坐标(x0,y0)处的强度为图像在那一点的灰度级(l)即:l=f(x0,y0);
10. 数字化坐标值称为取样,数字化幅度值称为量化。
11. 高动态范围图像是指占有灰度级全部有效段的图像。
12. 位于坐标(x,y)的一个像素p有4个水平和垂直的相邻像素,这4个像素组成的像素集称为p的4邻域,用N4(p)表示。P的4个对角邻像素用ND(p)表示,与4个邻域点一起把这些点叫做p的8邻域,用N8(p)表示。
13. 图像内插(1)最近邻内插法,因为这种方法把原图像中最近邻的灰度赋给了每个新位置。(2)双线性内插,在该方法中,我们用4个最近邻去估计给定位置的灰度,灰度v(x,y)=ax+by+cxy+d;其中四个系数可由4个用(x,y)点最近邻点写出的未知方程确定。(3)双三次内插,它包含16个最近邻点,其公式如下:
14. P和Q间的欧几里得距离定义如下:
15. P和Q之间的距离D4(又称为城市街区距离)由下式定义(p,q)=|x-s|+|y-t|;
16. P和Q之间的距离(又称为棋盘距离)由下式定义:
17. 几何变换的公式:数字图像处理(冈萨雷斯)第三版(中文)P51.
18. 使用式:g=Hf+n表示图像的线性处理。其中f表示输入图像的MN*1向量,n表示一个M*N噪声模式的MN*1向量,g表示处理后图像MN*1的向量,H是用于对输入图像进行线性处理的MN*MN矩阵。
19. 图形变换的通用形式以及反变换的概念:P54。
20. 正变换核、变换变量、反变换核以及变换核是可分的和不可分、变换核是否是对称的等概念P54-P55。
21. 空间域指图像本身,这类图像处理方法直接以图像中的像素操作为基础。这是相对于变换域中的图像处理而言的。变换域的图像处理首先把一副图像变换到变换域,在变换域中进行处理,然后通过反变换把处理孔结果返回到空间域。空间域处理主要分为灰度变换和空间滤波两类。灰度变换在图像的单个像素上操作,主要以对比度和阀值处理为目的的。
22. 邻域与预定义的操作一起称为空间滤波器。
23. 对比度拉伸是指低于k的灰度级更暗,高于k的灰度级更亮。
24. 增强处理是对图像进行加工,使其结果对于特定的应用比原始图像更合适的一种处理。
25. 常用的灰度变换函数:(1)图像反转:s=L-1-r(r和s分别表示处理前和处理后的灰度)。这种类别特别适用于增强嵌入在一幅图像的暗区域中的白色或灰色细节,特别是当黑色面积在尺寸上占主导地位时。(2)对数变换:s=clog(1+r);作用:扩展图像中的暗像素的值,同时压缩更高灰度级的值。对数函数能压缩像素值变化较大的图像的动态范围。(例如傅里叶频谱)。(3)幂律(伽马)变换,公式:(c和γ是正常数)。作用:可以对图像进行对比度增强也可以对图像进行“冲淡”。
26. 分段线性变换函数:(1)对比度拉伸(2)灰度级分层(3)比特平面分层.
27. 概率密度函数(PDF);累计分布函数(CDF)。
28. 和分别表示r和s的概率密度函数,s=T(r);变换后的变量s的PDF可由下面的公式得到:;在图像处理中特别重要的变换函数有如下形式:;(L-1是像素的灰度的最大值);其中,是一个均匀的概率密度函数。
29. 对于离散的灰度值,我们处理其概率(直方图值)与求和来替代处理概率密度函数与积分。P75-P76.
30. 这种用于产生处理后有特殊直方图的方法称为直方图匹配或直方图规定化。
31. N阶矩、取样均值、取样方差(P85)。
32. 空间滤波器由(1)一个邻域(典型地是一个较小的矩形),(2)对该邻域包围的图像像素执行预定义的操作组成。如果在图像像素上执行的是线性操作,则该滤波器称为线性空间滤波器。
33. 使用一个大小为m*n的滤波器对大小为M*N的图像进行线性空间滤波,可由下式表示:;其中m=2a+1.n=2b+1;
34. 空间相关指滤波器模板移过图像并计算每个位置乘积之和的处理。将包含单个1而其余都是0的函数称为离散单位冲激。可以得结论:一个函数与离散单位冲激相关,在该冲击位置产生这个函数的一个翻转的版本。
35. 为了执行卷积操作,需要把一个函数旋转180°,然后执行相关中的相同操作。
36. 一个大小为m*n的滤波器与一幅图像做相关操作,可表示为;其中;卷积操作表示为:
37. 平滑线性滤波器用于模糊处理和降低噪声,也有可能造成图像边缘模糊。平滑线性空间滤波器的输出时包含在滤波器模板邻域内的像素的简单平均值。这些滤波器也称为均值滤波器,也可以将它归为低通滤波器。均值滤波器的主要应用是去除图像中不相关细节。所有系数都相等的空间均值滤波器有时称为盒状滤波器。
38. 统计排序(非线性)滤波器。这一类中最著名的滤波器是中值滤波器。中值滤波器对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的功能是使拥有不同灰度的点看起来更接近它的相邻点。在统计排序滤波器中还有比较常用的滤波器有:最大值滤波器和最小值滤波器。
39. 锐化处理的主要目的是突出灰度的过度部分。在逻辑上我们可以得出锐化处理可由空间微分来实现。图像微分增强边缘和其他突变(如噪声),而削弱灰度变化缓慢的区域。
40. 对于一阶微分的基本定义是差值:;
41. 对于二阶微分我们定义为如下差分:;
42. 二阶微分在增强细节方面要比一阶微分好得多。
43. 各向同性滤波器是旋转不变的,即将原图像旋转后进行滤波处理给出的结果与先对图像滤波然后再旋转的结果相同。最简单的各向同性微分算子是拉普拉斯算子,f(x,y)的拉普拉斯算子定义为:;在x方向上我们有:;在y方向上我们有:;所以两个变量的拉普拉斯算子是:;由于拉普拉斯算子是一种微分算子,因此其应用强调的是图像中灰度的突变,并不强调灰度级缓慢变化的区域。我们使用拉普拉斯对图像增强的基本方法可表示为下式:。
44. 非锐化掩蔽和高提升滤波P100。
45. 图像处理中的一阶微分是用梯度幅值来实现的。对于函数f(x,y),f在坐标(x,y)处的梯度定义为二维列向量:;向量的幅度值(长度)表示为,即;
46. Roberts(罗伯特)交叉梯度算子。P102