YOLOv10改进 | 注意力篇 | YOLOv10引入SimAM注意力机制

1. SimAM介绍

1.1  摘要:在本文中,我们提出了一个概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。 与现有的通道和空间注意力模块相比,我们的模块为层中的特征图推断 3D 注意力权重,而不向原始网络添加参数。 具体来说,我们基于一些著名的神经科学理论,提出优化能量函数来找到每个神经元的重要性。 我们进一步推导了能量函数的快速封闭式解决方案,并表明该解决方案可以用不到十行代码来实现。 该模块的另一个优点是,大多数算子是根据定义的能量函数的解来选择的,避免了过多的结构调整工作。 对各种视觉任务的定量评估表明,所提出的模块灵活有效,可以提高许多ConvNet的表示能力。

官方论文地址:http://proceedings.mlr.press/v139/yang21o/yang21o.pdf

官方代码地址:http

我作为AI语言模型,无法直接提供代码,但是我可以为你提供SEAM注意力机制的基本原理和实现步骤。 SEAM(Selective Encoding with Attentive Memory)注意力机制是一种用于文本分类、命名实体识别等自然语言处理任务的注意力机制。它结合了两种不同的注意力机制:自注意力和外部注意力。 SEAM注意力机制的实现步骤如下: 1. 首先,输入文本经过一个编码器,将每个单词映射为一个向量。 2. 对于每个单词,计算其自注意力权重。使用多头自注意力机制,将输入的单词向量分为多个头,每个头计算一组注意力权重。最终将多个头的注意力权重拼接在一起,得到单词的自注意力权重。 3. 对于每个单词,计算其外部注意力权重。这里的外部注意力是针对一个外部的记忆库,比如先前的文本或者知识库等。将这个外部记忆库中的向量与当前单词的向量进行点积,得到注意力分数。再将这些分数进行softmax归一化,得到每个单词的外部注意力权重。 4. 将单词的自注意力权重和外部注意力权重结合起来,得到最终的注意力权重。 5. 将每个单词的向量乘以其对应的注意力权重,得到加权后的向量。 6. 对所有加权后的向量进行平均池化或者最大池化,得到整个文本的表示向量。 7. 最后,将文本表示向量输入到一个分类器中,进行分类。 SEAM注意力机制的核心思想是将自注意力和外部注意力结合起来,从而更好地捕捉文本的重要信息。相比于传统的注意力机制,SEAM注意力机制可以更好地处理长文本,并且具有更好的可解释性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值