YOLOv10改进 | Conv篇 | YOLOv10引入DWR

1. DWR介绍

1.1  摘要:当前的许多工作直接采用多速率深度扩张卷积从一个输入特征图中同时捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。 然而,这种设计可能会因为结构和超参数的不合理而导致多尺度上下文信息的访问困难。 为了降低多尺度上下文信息的绘制难度,我们提出了一种高效的多尺度特征提取方法,将原始的单步方法分解为区域残差-语义残差两个步骤。 在该方法中,多速率深度扩张卷积在特征提取中发挥更简单的作用:基于第一步提供的每个简明区域形式特征图,在第二步中使用一个期望的感受野执行简单的基于语义的形态过滤 ,以提高他们的效率。 此外,详细阐述了每个网络阶段的扩张率和扩张卷积的容量,以充分利用可以实现的所有区域形式的特征图。 因此,我们分别为高层和低层网络设计了一种新颖的扩张式残差(DWR)模块和简单倒置残差(SIR)模块,并形成了强大的DWR分段(DWRSeg)网络。 在 Cityscapes 和 CamVid 数据集上进行的大量实验证明了我们的方法的有效性,除了重量更轻之外,还实现了准确性和推理速度之间最先进的权衡。 在没有预训练或采用任何训练技巧的情况下,我们在 Cityscapes 测试集上以 319.5 FPS 的速度在一张 NVIDIA GeForce GTX 1080 Ti 卡上实现了 72.7% 的 mIoU,这超过了最新方法的 69.5 FPS 和 0.8 FPS。 % 毫升数。

官方论文地址:

### YOLOv8中的Ghost模块改进 ghost轻量化模块通过引入鬼魅(幽灵)卷积来优化YOLOv8模型性能[^1]。传统卷积操作计算量大,在移动设备上部署效率较低。为了提高推理速度并减少参数数量,研究人员提出了基于通道拆分和线性变换的鬼魅卷积。 #### 鬼魅卷积原理 鬼魅卷积的核心思想在于利用较少的基础特征图生成更多样化的输出特征图。具体来说,先执行一次标准卷积得到基础特征图,再通过对这些基础特征应用一系列简单的线性变化(如逐元素相加),从而构建出完整的输出特征集。这种方法能够在几乎不增加额外运算成本的情况下显著提升表达能力。 ```python import torch.nn as nn class GhostConv(nn.Module): def __init__(self, inp, oup, kernel_size=1, ratio=2): super(GhostConv, self).__init__() init_channels = int(oup / ratio) new_channels = init_channels * (ratio - 1) self.primary_conv = nn.Sequential( nn.Conv2d(inp, init_channels, kernel_size=(kernel_size, kernel_size), stride=(1, 1)), nn.BatchNorm2d(init_channels), nn.ReLU(inplace=True) ) self.cheap_operation = nn.Sequential( nn.Conv2d(init_channels, new_channels, kernel_size=(1, 1)), nn.BatchNorm2d(new_channels), nn.ReLU(inplace=True) ) def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) out = torch.cat([x1, x2], dim=1) return out ``` 上述代码展示了如何定义一个基本版本的鬼魅卷积层。该实现方式不仅保持了原有功能特性,还进一步降低了计算复杂度,使得整个网络更加高效紧凑。 #### 应用到YOLOv8的具体措施 当把这种高效的鬼魅卷积应用于YOLOv8架构时,可以考虑将其替换部分原有的普通卷积单元或者作为瓶颈结构的一部分加入到骨干网中去。这样做既不会破坏整体框架的设计理念,又能有效增强检测器的速度表现以及资源利用率。 除了直接替换单元外,还可以探索其他组合形式比如与SIR或DWR等新型组件联合使用,形成更强大的混合型残差连接模式,进而达到更好的效果[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值