基于双线性映射的签密方案:短可分离签名方案解析
在密码学领域,签密方案是一种将签名和加密功能结合在一起的重要技术,能够在保证消息机密性的同时提供签名的认证性。本文将详细介绍一种具有短可分离签名的签密方案,探讨其原理、效率、匿名通信特性以及安全性。
1. 方案概述
该签密方案由 Libert 和 Quisquater 提出,其构建依赖于 Zhang 等人以及 Boneh - Boyen 独立提出的签名方案。与原始的 BLS 短签名不同,此方案能高效生成 160 位签名,且无需使用将待签名消息映射到椭圆曲线子群的特殊哈希函数。在随机预言模型下,该方案基于 q - 强 Diffie - Hellman 假设的安全归约比 Zhang 等人基于 q - Diffie - Hellman 求逆假设的归约更高效。
协议使用(掩码)签名作为类似 ElGamal 的临时密钥,并使用校验和来表明消息已被正确加密。发送者首先计算指数 $r \leftarrow \gamma / (h_1(b_m \parallel m \parallel pk_S) + sk_S) \in Z_p^ $,其中 $\gamma$ 从 $Z_p^ $ 中随机选取,$m$ 是待签名和加密的消息,$b_m$ 是根据 Katz 和 Wang 的证明技术计算的与消息相关的比特。这个指数 $r$ 用于计算临时 Diffie - Hellman 密钥 $g_1^r$,并使用 $\psi(pk_R)^r$ 的哈希值对秘密 $\gamma$ 进行加扰,同时 $\gamma$、$\psi(pk_R)^r$ 和其他元素的摘要用于使用确定性的一一对应对称加密方案隐藏消息 $m$。