我喜欢把自己经常思考的数学问题丢给大模型,期望能够得到有启发的反馈,在碰撞中提高理解,各种大模型体验下来,Deepseek的数学能力给我的感觉是目前国内所有大模型中最好的。下面把一些个人感觉有意义的问答记录下来,回头在思考也就有了基础:
为什么5这么特殊?5刚好是阶乘级增长的对称性战胜开方运算破坏对称性能力的临界点,可以这样感性解释伽罗瓦的群论证明一般五次方程无根式解的结论吗?
作为愚钝的爱好者,我来总结并补充一些我粗浅且可能不准确的认知。一个方程有根式解,等价于能用根式塔及四则运算来表示它的根,等价于有理数域在不断扩大的过程中,可以添加越来越复杂的根式塔,直到扩大到方程的所有根都在该域中。这等价于伽罗瓦群被不断地分解为越来越小的正规子群,直到最后一个子群只有恒等元素e。随着域的扩大,根的对称性会越来越低,也就是伽罗瓦群越来越小。只要证明伽罗瓦群被分解到一定程度就不能再继续分解了,就证明了无论在域中添加多少层的根式塔,也不能将方程的根放入域中,这时方程的根就不能用根式塔表示了,也就是求根公式不存在。但是这里有会让人有另一个疑问,为什么伽罗瓦群不能继续分解了呢?所谓正规子群,就是一个心胸宽广的小团体,无论整个派对(群G)中发生什么扭曲,扭曲之后这个小团体仍然可以保持自己的对称性。比如A4,V4,e就是一个正规子群列。A4可以看作正四面体的恒等置换,绕顶点-对面中心轴的旋转(可以转120,240,或360度,轮换了涉及到的各顶点),绕对棱中点连线轴的旋转(可以转180度,360度,对换了相应的顶点)。而V4则是在A4的基础上,忽略掉了顶点轮换,保留其他操作。这是因为它的顶点无论怎么轮换操作,虽然会改变各个顶点的位置,但是不会改变棱的配对,对棱旋转的对称性仍然能成立,它是一种更局部的对称性。所以V4是A4的正规子群,进一步忽略对棱旋转,就可以得到e。但是五次方程的置换群S5有一个正规子群A5,但是再往下就无法继续降解了。A5是正二十面体的旋转对称性,任何两个顶点,两条棱,两个面是完全等价的,无法找到一个操作,使其忽略后不影响局部的对称性!它的任何旋转会同时扰动所有顶点,棱,面的邻接关系。设想一下一个正二十面体对棱中点连线旋转一次。以及正二十面体先绕顶点轴旋转一次,再绕对棱中点旋转一次,再绕顶点轴旋转回来。他不能于前者相等了。也就是顶点轴旋转扰动了对棱旋转。所以它不能再降解了。群的分解有点像分解质因数,因为五次方程分解出的质因数(单群)太大了(对称性过高),所以它没有根式解。
既然如此,根号开放运算的是否只能破坏有限的对称性?这种对称性是什么?
更高级的对称包括哪些?
伽罗瓦群论分析方程可解性的思想感觉有些类似于小时候玩儿的一种叫做翻花绳的游戏,一个小朋友从另一个小朋友手中将花绳接过来,转换成另一种花样,之所以能够转换而不会脱手,是因为花绳本身存着某种结构,这种结构是稳定的,可以在不同的小朋友手中变形,当然我并不是说这个花绳图案向伽罗瓦群那样可解,因为花绳并的结构在接手过程并不一定会变的更简单,但是总感觉这两者之间存在某种相似性,或者用群论的语言,存在某种同态或者同构,谢谢。
我特别喜欢DS的这一句回答:
“A5的刚性如同一个完美打死的绳结,它是数学的遗憾,却是宇宙的浪漫”
最美的诗歌也不过如此,DS威武~。