方向向量转欧拉角、旋转矩阵、四元数

本文记录了在项目中如何使用Eigen库将三维空间的方向向量转换为旋转矩阵的过程,以解决方向向量转化为欧拉角时出现的不连续问题。通过球坐标系的参数方程求解,得到旋转矩阵,并进一步计算四元数和欧拉角。文章引用了相关资源以辅助理解转换方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目中需要将三维空间方向向量转化为旋转矩阵来表示,解决方案记录如下

基于Eigen库实现算法中的矩阵运算。

输入

方向向量Vector3d tmpvec,参考单位向量Vector3d zaxis(0,0,1)

输出

旋转矩阵m

          Eigen::Matrix3d m;

          Eigen::Vector3d zaxis(0, 0, 1);
          Eigen::Vector3d tmpvec(vx, vy, vz);
          tmpvec.normalize();

          Eigen::Vector3d xaxis = zaxis.cross(tmpvec);
          xaxis.normalize();
          Eigen::Vector3d yaxis = tmpvec.cross(xaxis);
          yaxis.normalize();

          m(0, 0) = xaxis(0);
          m(0, 1) = yaxis(0);
          m(0, 2) = tmpvec(0);

          m(1, 0) = xaxis(1);
          m(1, 1) = yaxis(1);
          m(1, 2) = tmpvec(1);

          m(2, 0) = xaxis(2);
          m(2, 1) = yaxis(2);
          m(2, 2) = tmpvec(2);

得到旋转矩阵后便可基于EigEigen库计算四元数或欧拉角,根据参考向量的不同需要对旋转矩阵做相应调整,可参考[3]。


旋转矩阵转换为四元数
    Eigen::Quaterniond quaternion2(rotation_matrix);

旋转矩阵转换为欧拉角
    //ZYX顺序,即先绕x轴roll,再绕y轴pi
### 欧拉角旋转矩阵四元数的关系 欧拉角旋转矩阵以及四元数都是用来描述三维空间中的旋转的不同方式。每种表示方法都有各自的优点,在不同的应用场景中有特定的选择。 #### 欧拉角旋转矩阵换 当给定一组按照一定顺序(比如Z-X-Z, X-Y'-X''等)定义的三个角度θx, θy 和 θz作为欧拉角时,可以构建相应的旋转矩阵R: \[ R = R_z(\theta_z) \cdot R_y(\theta_y) \cdot R_x(\theta_x)\] 其中\(R_x\), \(R_y\) 和 \(R_z\)分别代表绕着各自轴线的角度旋转变换[^2]。 对于具体的计算过程来说,如果已知某物体相对于固定参照系的姿态由这三个连续动组成,则可通过上述公式得到该姿态所对应的旋转矩阵形式。 #### 四元数旋转矩阵间的相互四元数q=(w,x,y,z),这里w是实部而(x,y,z)构成虚部向量v;它同样能够表达一个刚体在三维空间内的定向状态。从四元数成标准3×3阶正交阵(即旋转矩阵): \[ R=\begin{bmatrix} 1-2(y^{2}+z^{2}) & 2(xy-wz) & 2(xz+wy) \\ 2(xy+wz) & 1-2(x^{2}+z^{2})& 2(yz-wx)\\ 2(xz-wy) & 2(yz+wx) & 1-2(x^{2}+y^{2}) \end{bmatrix} \] 反之亦然,可以从任意有效的旋转矩阵推导出唯一的单位长度四元数来表示相同的旋转操作[^4]。 #### 使用Eigen库实现换 以C++编程环境为例,利用流行的线性代数模板库——Eigen,可以直接调用内置函数完成这些变换工作。例如要将四元数对象`Quaterniond q(w,x,y,z)`化为旋转矩阵: ```cpp #include <iostream> #include <Eigen/Dense> using namespace Eigen; int main(){ Quaterniond q(0.7071, 0, 0.7071, 0); // 定义一个四元数 Matrix3d m; m=q.toRotationMatrix(); // 将其换为旋转矩阵m } ``` 以上就是关于如何理解并处理这三种常用的空间旋转表述之间联系的主要内容。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值