
问题建模
文章平均质量分 75
需求域的知识,流程的梳理和精确表述
子正
豆瓣:https://www.douban.com/people/twicave
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[笔记]一些温振监测实施方案中安装问题
摘要:温振传感器安装位置直接影响数据准确性,需遵循接触刚度最大化、远离干扰源和选择代表性位置等原则。安装不当可能导致信号衰减、噪声干扰或测量误差。优化方法包括有限元仿真辅助定位、多传感器阵列布局和自适应安装系统。不同行业的最佳实践(如电力电机轴承座安装、石化离心泵预紧力控制)可提高监测精度和故障识别率。原创 2025-08-07 10:55:23 · 758 阅读 · 0 评论 -
sfepy应力云图的加强筋造成的应力集中效果
本文探讨了不同网格结构对有限元分析中应力分布的影响。研究发现,相同载荷条件下,不对称网格结构会因加强筋效应导致应力极值偏移。作者通过扩展beam_h5t12.mesh文件构建了六面体网格beam_h6t12.mesh,并开发了自动获取边界坐标的辅助函数get_mesh_desc()。在SfePy框架下实现了简支梁受力分析,采用位移边界条件处理,求解速度可达50Hz。研究对比了pyvista和gmsh等可视化方案,指出pyvista在固定视角可视化方面更具优势。该研究为有限元网格划分和可视化提供了实用参考。原创 2025-07-17 17:03:01 · 46 阅读 · 0 评论 -
sfe_py解算简支梁集中载荷
本文介绍了使用sfe_py处理简支梁有限元分析的过程。首先加载beam_h7.mesh模型并创建区域划分(Omega全域及Gamma1-3边界区域)。然后设置边界条件,包括两端固定约束(fix_u_left,fix_u_right)和中段位移函数(shift_u_fun)。通过Newton求解器进行非线性求解,并输出计算结果到beam_h7.vtk文件。文中特别强调了边界条件设置的重要性,在多次迭代中修正了边界区域的坐标范围和约束条件,最终获得了合理的应力分布结果。整个流程展示了从网格划分、区域定义、边界条原创 2025-07-15 17:04:05 · 53 阅读 · 0 评论 -
sfe_py的应力云图计算与显示step by step
文章摘要:本文介绍了SfePy有限元分析软件的安装配置和使用方法。在WSL Linux环境下需安装虚拟显示器及相关依赖库(jax、OpenGL等),Windows环境需安装VCXSRV。建议初学者先从系统自带例程(如mixed_mesh.py)入手,通过sfepy-run和sfepy-view命令运行和查看结果。文中还提及梁分析案例的参数调整建议,以及两个实用附录:A)关于网格优化算法的参考文档,B)传感器布置时避免剪力滞效应的建议——应优先选择腹板而非翼板位置。原创 2025-07-14 17:40:53 · 88 阅读 · 0 评论 -
起重机械的工作循环门限值计算逻辑
本文依据GBT25196-2018标准,介绍了起重机设计工作周期的监控方法。主要内容包括:1)当给定载荷谱和使用等级时,应力循环门限的计算公式及相关参数取值(系数f1、载荷谱系数Kp、使用等级Dn等);2)仅给出工作级别时,工作循环公式的简化形式及对应工作级别Dc的取值;3)以起升机构工作时间为统计对象的工作循环极限计算方法(标准第9-10页)。标准对起重机不同工况下的应力循环评估提供了详细的技术指导。原创 2025-07-08 18:23:35 · 318 阅读 · 0 评论 -
结构钢的应力相关参数配置表及解析
本文提供了Q235和Q345结构钢的应力分析关键参数,包括弹性模量、屈服强度等力学特性,以及不同厚度下的设计应力值(抗拉、抗压、抗剪)。同时涵盖螺栓连接和焊缝(对接焊、角焊)的设计应力参数,并给出疲劳分析的S-N曲线特征。数据依据2018年版《结构设计原理》,建议参考2017年后新版规范获取更准确信息。文中参数以JSON格式呈现,便于工程应用时直接调用。原创 2025-07-08 10:32:08 · 113 阅读 · 0 评论 -
包络的滤波参数配置
瑞典CXBalancer手持振动分析仪的包络档位设置存在设计策略问题。分析指出,包络计算的带通滤波频点只需隔离轴故障频域范围即可,商业产品,建议将低频点设置为3倍轴转频(约600Hz)。对于非定向用户,这一设置足够;定制设备则可按6倍最大轴转频配置起始频点。文章还提到SKF振动监测产品采用类似策略,并强调变频器频率和电机极对数对确定轴转频的作用。原创 2025-07-03 14:18:07 · 173 阅读 · 0 评论 -
物力维艰 - 低效状态的自我感知 - AI的统计与处理
一个工作中发生的低效循环,以及AI对这类死循环的发生率统计和处理。原创 2025-07-01 16:40:56 · 638 阅读 · 0 评论 -
尝试用double FFT的方法对变速箱的转速进行识别
摘要:本文探讨了双FFT信号分析方法在电机振动信号检测中的应用。通过200ms采样数据识别到5Hz信号,经前后补零将采样时长扩展至2s后,频谱分辨率提升至0.5Hz。第二峰值14.5Hz与735rpm电机经50:1变速比后的理论频率14.7Hz相符,验证了该方法的有效性。文中提供了两种工况下的Python实现代码,包括Hamming窗处理、FFT计算和频谱可视化等关键步骤。原创 2025-06-29 14:13:24 · 480 阅读 · 0 评论 -
复指数函数的扭转效果 - 图示
虚指数函数与实函数乘积的可视化,有个错误,我不知道错在哪里。。。原创 2025-06-26 18:45:18 · 336 阅读 · 0 评论 -
多通道信号采集分析系统 - 02 实时数据流概述
摘要: 本文描述了一个实时数据采集与分析系统的流程设计。系统通过调度程序触发数据采集,利用Redis进行进程间通信和数据同步,MQTT用于事件通知。模块分工明确:调度程序负责步骤执行,采集程序完成单次作业,状态监测系统处理指标计算,故障侦测系统管理报警逻辑。状态信息分阶段记录(App_In/Out),并设有异步扫尾进程应对异常。数据项点分为设备级、逻辑通道级和工件级,各模块独立反馈状态至Redis和MQTT。系统支持并行指令群执行。原创 2025-06-26 16:32:34 · 163 阅读 · 0 评论 -
物力维艰 - AI错误逻辑的应对及处置
这篇文章探讨了字符串替换函数gp_str_replace的潜在缺陷,并展示了AI在代码分析中的局限性。作者通过具体案例演示了:AI在分析代码时容易陷入逻辑误区,一些僵化的思维方式,可能会在某些问题回答过程中陷入死循环,这种AI的分析盲区可能具有普遍性,类似弱点在实战中可能被利用。在觉察到AI的僵化处理策略,让其提交具体案例反证,而非直接提问,可以更有效地测试AI的代码分析能力。原创 2025-06-19 10:20:26 · 837 阅读 · 0 评论 -
多通道信号采集分析系统 - 01 功能分解与采样子系统
一个传感器采样及数据推送程序...借助mqtt来做消息分发,将数据推送给多个不同智能的用户。原创 2025-06-12 14:18:24 · 771 阅读 · 0 评论 -
夏季携带冰包物理降温的温升计算及实验验证
通过实验和数值模拟研究了冰水混合物的温升特性。1.25升饮料瓶在37℃温差下约1.5小时升至25℃(实测),与数值模拟结果吻合。400ml冰包的模拟显示约2小时升至25℃。能量分析表明完全依靠人体散热需要约10.75小时,实际应用中建议使用保温材料携带4-5个冰包,可提供4-5小时的降温时长。模拟考虑了热导率、表面积等因素,为便携式降温方案提供了理论依据。原创 2025-06-12 12:00:29 · 664 阅读 · 1 评论 -
某公司自营振动信号采集产品及PHM应用一例
本文介绍了两个温振采集设备的技术参数,及一则振动筛故障监测诊断与检修确认的过程。是PHM温振分析的一个典型案例。原创 2025-06-10 09:53:18 · 1023 阅读 · 2 评论 -
振动传感器采集电路 02 - 采样电路的抗混叠滤波
一个AD采样电路抗混叠滤波和输入阻抗匹配的推导(进行中...)原创 2025-06-05 17:46:32 · 975 阅读 · 0 评论 -
振动传感器采集电路 01 - 参考设计ADI CN0540
本文涉及一款IEPE压电振动传感器相关采集电路的参考设计。包含相关指标的评注。它隶属PHM的振动分析范畴。振动传感器的频响、温飘、动态范围、ADC零点的处理,已经必要的滤波电路是振动分析算法设计必须要考虑的项点。这份参考设计中对这些问题会有自己的处理。然后,它还包含一些最新的与振动采集,基于状态的振动检测的最新参考设计与器件的链接。这是一篇系列文章。打算沿着ISO 18436-2 对整个故障分析链路进行稍稍全面的梳理。原创 2025-06-05 10:45:58 · 1344 阅读 · 0 评论 -
ISO18436-2 CATII级振动分析师能力矩阵
振动分析的一份行业培训和认证计划的一瞥。在这个四级证书认证体系中,给出了CATII级别的大致能力要求和相关培训的大致内容。供从业人员了解。附录,给出了关联的针对振动分析师的ISO18436标注的出处和大致范围。原创 2025-06-02 11:51:48 · 1379 阅读 · 1 评论 -
轴类相关部件故障的调制波
文章分析了齿轮传动系统的振动频谱特征,指出正常工作状态下主要表现为轴频和啮合频两个频点。当存在缺陷时,突变和渐变两种故障类型会引发1X、2X谱线变化,而皮带传动会产生分数频率。重点探讨了边频带的形成机理,认为可能是机电反馈导致的非线性调制现象,而非简单的简谐振动叠加。文章还提及了拍频、李萨如图等异常现象,以及虚假谱线、相位错乱等测量误差问题,并计划通过同步测量力矩和振动波形来验证边频带形成理论。最后附录记录了与AI关于简谐振动叠加的讨论。原创 2025-06-02 09:45:12 · 586 阅读 · 0 评论 -
XJTU-SY轴承振动数据集的json自封装
本文介绍了一个将XJTU-SY轴承振动数据集转换为结构化JSON格式的自动化处理方案。该方案通过Python程序实现了原始CSV数据的格式转换,将15个测试用例的轴承振动数据(包含水平/垂直分量)转换为包含元数据的JSON文件。每个JSON文件自包含数据集信息(名称、作者、DOI)、测试条件(转速、载荷、故障类型)、采样参数(32位浮点hex编码)和时间序列数据。转换程序采用大端序处理浮点数据,确保数据精度,并自动生成时间戳和校验信息。最终输出的JSON文件便于后续分析使用,避免了查阅多份文档的不便。原创 2025-05-28 18:47:44 · 860 阅读 · 0 评论 -
知乎一位电机领域的同志的专业笔记
电机类大概从业了10年(含学习)的经验分享。原创 2025-05-27 17:18:31 · 846 阅读 · 0 评论 -
振动分析 - 速度谱与加速度谱的转换
摘要:本文介绍了频谱特征转换的方法,通过简谐振动公式实现了速度谱与加速度谱之间的相互转换。提供了Python程序代码示例,包括加速度谱转速度谱、速度谱转位移谱等功能函数。并以周老师的速度数据为例,展示了如何将速度谱转换为加速度谱,最终绘制出两者的对比图表。其中50Hz和100Hz谱线在加速度谱中的比例关系符合理论预期,验证了转换方法的正确性。原创 2025-05-27 11:58:37 · 447 阅读 · 0 评论 -
振动分析 - 献个宝
这个分析工具似乎真的定位到了故障的具体位置。原创 2025-05-21 17:45:36 · 231 阅读 · 0 评论 -
振动分析相关FAQ - Part I
温振分析过程中涉及到的一些知识点,期望能尽可能铺满与工程应用相关的领域,指出那些可能的陷阱。原创 2025-05-21 10:05:45 · 1133 阅读 · 0 评论 -
时频分析的应用—外部信号的显影和定点清除
上面的图样是一张时频图,横坐标是时间,纵坐标是频率,可见的横向波形纹路,不同的颜色标志着主要的干扰源,它们是50Hz工频谐波。这类信号在数据分析领域往往是需要过滤掉的杂波。因为这类信号足够强,所以他会在频域弥漫为一组同样特征的谐波信号,比如450HZ的是9倍频,而下移7.5hz的同样振幅的信号,显然是另一种谐振波形。这类信号,可以通过信号的自相关特性几乎完全消除掉:这个一个典型应用,记录在这篇文章中:你能想到它的可能应用场景吗?原创 2025-05-16 18:48:10 · 475 阅读 · 0 评论 -
风电系统预防性维护相关国标FAQ
风电系统运维与监测相关的核心标准可参考GB/T20319-2017。产品预验收文档集合包括机组及主要部件质量及说明文件、安装工程验收文件、机组调试报告等。最终验收报告需增补运行日志、维护记录、检修记录、故障统计表、设备运行数据、移交生产验收资料等。原创 2025-05-15 12:08:55 · 143 阅读 · 0 评论 -
振动信号测量域的时频测量值项点及趋势实例
摘引自。原创 2025-05-14 10:03:58 · 59 阅读 · 0 评论 -
[笔记]几起风电结构失效案例与简单分析
一些风电事故案例,一份分析报告,及一个合格的状态监测系统的可能的设置(美国风电联合会的最佳实践),修订中...原创 2025-05-12 14:07:43 · 449 阅读 · 0 评论 -
专业知识的检索过程 stepbystep - 样例
这是一套与风电有关的PHM系统相关资料的搜集过程实例展示。展示了相关的系统设计目标相关的资料搜集过程。原创 2025-05-12 12:07:08 · 258 阅读 · 0 评论 -
振动临近失效状态,怎么频谱会是梳子?
在破坏性试验的终末期,振动波形在时域上表现为正常的冲击信号,但在频域上却呈现出异常复杂的形态。这种现象通常是由于系统在极端条件下发生非线性响应或结构损伤导致的。你能解释这种频谱特征吗?能提取出此时的振动的关键特征?原创 2025-05-09 19:11:42 · 286 阅读 · 1 评论 -
PHM领域的两个阶段:状态监测与故障诊断
今天在整理振动分析系统的需求清单时遇到了这个问题。我的需求清单的基本结构是这样的:它远远不全,只是就着我平时的一些书签,大致整理出了一份非常简短的名单。对照着手头的项目进行需求梳理时,发现了一组之前没有意识到的问题。对于故障检测领域,其实有至少三类到四类系统在运作,他们的基本目标是不同的。对于在线监测领域,事实上有两代系统:CMSCondition Monitoring System,设备状态监测系统FDS故障诊断系统FDDS故障侦测与诊断系统。原创 2025-05-08 14:59:11 · 503 阅读 · 0 评论 -
振动信号分析 - 复数坐标变换引发的问题
又假定我们需要将其坐标转换为0点记作:32768,然后正值部分>32768,负值<32768的u16,满量程暂且定为65535 = 50(value)非常annoy,对吧?所以计算时,尽量不要改变数值的量程和中心点,否则你得出的数值极易出错。你知道为啥4,5不等吗?因为此时的模的圆心变了。原创 2025-05-08 12:09:28 · 364 阅读 · 0 评论 -
从xjtu-sy数据集中看轴承故障的发展趋势与基本特征
1.4中,数据彼此相差1分钟,电机每分钟是1500转,相当于6000转之内,故障就明显出现成型了。所以,如果定那个故障的特征:我觉得把特征谱线处,加速度峰值>=5g可以作为判据,如果使用历史数据,那么特定谱线的幅度较历史值超出5倍,似乎也是比较合适的阈值。1.需要考虑振动在不同转速下的归一化问题,(峰值的归一化),最终的阈值需要先进行峰值归一化,然后再设定。我记得应该是个平方关系。2.也许可以考虑取用某个频段范围内多个峰值点取算术平均然后利用这个平均值和1x频点的比率来评估某个频点的谱线已经形成。原创 2025-05-07 17:11:21 · 231 阅读 · 1 评论 -
xjtu_sy 1_1 外圈故障振动数据分析初步
近似不变,第一个峰值出现在219.8Hz的位置。感觉问题出在对数据resample的时候,即使按照时域图,此时的数据特征频率应该是:0.20s/22cycles = 110Hz,与理论的外圈故障相当。从初始阶段到终末期,频谱峰值谱线的极值,0.0028->增加到了0.16 = 57倍。轴承故障频点,所用的轴承是LDK UER204。原创 2025-05-06 18:01:57 · 231 阅读 · 0 评论 -
某振动分析系统的参数交叉核算
振动分析系统一篇论文相关的参数校验和推导。原创 2025-05-06 16:11:00 · 156 阅读 · 0 评论 -
极简cnn-based手写数字识别程序
这个程序识别的是0~9的一组手写数字,这是最终的识别效果,为1,代表识别成功,0为失败。然后数据源是:ds = deeplake.load('hub://activeloop/optical-handwritten-digits-train')里面是一组压缩存储的32*32 bits 0-1点阵,内容是0~9的数字的手写数据。我训练了150次,最终达到的效果。模型非常简单:其中两级卷积层,然后是一个池化层,然后是两组映射,最终到达一组prob数据,然后它的维数是10。原创 2025-04-11 12:44:41 · 684 阅读 · 0 评论 -
最简CNN based RNN源码
本文参考了《深度学习与交通大数据实践》3.3.3有修改。这基本是我临摹下来,并且立即思路的第一版机器学习代码。原创 2025-04-08 15:49:49 · 517 阅读 · 0 评论 -
最简rnn_lstm模型python源码
这是一个基于机器学习的时间预测。包含数据集生成,训练和预测。数据源直接模拟了一个10个周期的sin()函数,把前70%划分为训练集,建立了一个已知前2点,求下一点的训练集,并搭建相应的lstm模型。不到120行代码,参考了《深度学习与交通大数据实战》3.2节。注意这本书只能在京东等在线商城网购,才能拿到相应的数据集和源码。我的是在当地新华书店买的——买清华出版社,记得这个恶心的规定。信号的相位信息基本一致,sin(x)特征基本保持,幅度有问题,然后时间序列预测最前面出现了一点异常。不知道有谁能消除掉它吗?原创 2025-04-07 18:24:53 · 293 阅读 · 0 评论 -
一个极简的反向传播实现
这是2022年,北方交通大学的同志实现的。包含机器学习的所有过程。前向,反向,损失函数,detect,然后数据集使用了sklearn.datasets的make_moons()。原创 2025-04-07 12:32:26 · 248 阅读 · 0 评论 -
从静电场的电力线测量公式逆推电场解析函数
假定平面静电场的电力线是一个抛物线方程:其中c>0,求这个电场的等电势线。这其实就是在已知该解析函数在四维空间的一个切面的某一个维度的函数表达式的情况下,求解第四维德分布函数。我看看能否直接用希尔伯特变换来处理它。我知道答案,所以,要做的只是看我的解法是否和传统的解法一致。原创 2025-04-01 12:04:22 · 544 阅读 · 0 评论