OpenCV学习笔记:KeyPoint和DMatch数据结构详解

本文深入解析OpenCV中常用的数据结构KeyPoint和DMatch,包括关键点的方向、坐标、响应程度、邻域直径等属性,以及特征点匹配的索引、图像索引和匹配距离。适合计算机视觉和图像处理的学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期事情太多了,课业也繁多,好久没更了,今天对OpenCV中经常用到的一些数据类型的结构进行一波分析,为自己做记录的同时也分享给大家。闲言少叙,开始操作。

一、KeyPoint 数据结构

angle       //关键点的方向,值为0~360,负值表示不使用。如SIFT算法中为了保证方向不变形,
            //通过对关键点周围邻域进行梯度运算,求得该点方向。(初值为-1)
         
octave      //表示的是关键点所在的图像金字塔的层组

pt          //关键点的坐标。pt.x为横坐标,pt.y为纵坐标。

reponse     //响应程度,代表了该点是特征点的稳健度,可以用于后续处理中特征点排序

class_id    //用于聚类的id,即当要对图片进行分类时,我们可以用class_id对每个关键点进行区分,
            //默认为-1,也可自己设定
            
size        //关键点邻域直径     

OpenCV源码再现KeyPoint数据类型
在这里插入图片描述

二、DMatch 数据结构

queryIdx        //query描述子的索引,即特征点在训练图像中检测出的特征点集中的下标号

trainIdx        //train描述子的索引,即特征点在匹配图像中检测出的特征点集中的下标号

imgIdx          //进行匹配图像的索引
                //如已知一幅图像的sift描述子,与其他十幅图像的描述子进行匹配,
                //找最相似的图像,则imgIdx此时就有用了。
                
distance        //对应特征点之间的欧氏距离,越小表明匹配度越高

OpenCV源码再现
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉闫小亘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值