惯性器件的误差
加速度计和陀螺仪的理论输出
- Question:

三轴加计
输出比力f⃗=a⃗−g⃗\vec f = \vec a - \vec gf=a−g
-
静置在水平地面上
垂向:fu=0−(9.8m/s2)=−9.8m/s2(方向向上)f_u = 0 - (9.8m/s^2) = -9.8m/s^2(方向向上)fu=0−(9.8m/s2)=−9.8m/s2(方向向上)
东、北向 fN/E=0−0=1=0m/s2f_{N/E} = 0 - 0 = 1= 0m/s^2fN/E=0−0=1=0m/s2
-
自由落体
垂向:fu=9.8m/s2−(9.8m/s2)=0f_u = 9.8m/s^2 - (9.8m/s^2) = 0fu=9.8m/s2−(9.8m/s2)=0
东北向依然为0
三轴陀螺
注:地球自转角速度约15°/h,陀螺放在地球表面相当于与地球刚体固联,固联刚体上角速度每点均相同。
则按地心自转轴ON⃗\vec{ON}ON对应的角速度we⃗\vec {w_e}we可平移至地面上任意一点。
(we⃗\vec{w_e}we平移至地表E点)
-
静置在赤道:
垂向(指向地心): 0
北向:地心自转角速度 wie=15°/hw_{ie} = 15°/hwie=15°/h
东向:0
-
静置在北极点:
垂向(指向地心):地球自转角速度wie=−15°/hw_{ie} = -15°/hwie=−15°/h
东北向:0
-
静置在任意位置:
垂向:−we⃗sinϕ-\vec {w_e}sin{\phi}−wesinϕ
东向: 0
北向:we⃗cosϕ\vec {w_e}cos{\phi}wecosϕ
ϕ\phiϕ为当地纬度角
-
车体运动情况(如上图向当地正北方向移动,IMU与东向、垂向正交):
车在地球圆弧上运动(赤道上角度为0,北极上角度为90度),圆弧上运动肯定有牵连角速度。
以上述E点为例,
w⃗e=[we⃗cosϕ0−we⃗sinϕ]+[0−VNR+h0]\vec w_e = \begin{bmatrix} \vec {w_e}cos{\phi} \\ 0 \\ -\vec {w_e}sin{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac {V_N}{R+h} \\ 0 \end{bmatrix}we=⎣⎡wecosϕ0−wesinϕ⎦⎤+⎣⎡0−R+hVN0⎦⎤
后边一项为牵连角速度,方向与本地东向正方向相反
以上结论为IMU与地球固联,即当地坐标系下的情况。若IMU放在载体上,还涉及到载体坐标系->当地坐标系的投影问题。
-
车体运动情况扩展(如下图2向当地正东方向移动,IMU与北向、垂向正交)
-
正东方向移动相当于沿着当地纬度方向移动,如下图gE⃗\vec {gE}gE , 正东方向运动对应右下角蓝色纬度圈,可计算对应经度变化率,角速度方向应垂直于地轴
-
运动载体上的陀螺输出(正东、正北)
-
a. 右下角为北极向下看的纬度圈截图,可计算正东向移动时对应经度变化率
w⃗=[we⃗cosϕ0−we⃗sinϕ]+[λ′cosϕ0−λ′sinϕ]\vec w = \begin{bmatrix} \vec {w_{e}}cos{\phi} \\ 0 \\ -\vec {w_{e}}sin{\phi} \end{bmatrix} + \begin{bmatrix} \lambda'cos{\phi} \\ 0 \\ -\lambda'sin{\phi} \end{bmatrix}w=⎣⎡wecosϕ0−wesinϕ⎦⎤+⎣⎡λ′cosϕ0−λ′sinϕ⎦⎤
b. 左下角为包含南北极平面截图,可计算正北向移动时纬度变化率
w⃗=[we⃗cosϕ0−we⃗sinϕ]+[0−VNR+h0]\vec w = \begin{bmatrix} \vec {w_{e}}cos{\phi} \\ 0 \\ -\vec {w_{e}}sin{\phi} \end{bmatrix} + \begin{bmatrix} 0 \\ -\frac {V_N}{R+h} \\ 0 \end{bmatrix}w=⎣⎡wecosϕ0−wesinϕ⎦⎤+⎣⎡0−R+hVN0⎦⎤
c. 高程方向变化不会影响陀螺输出。
理论输出总结

注:
- 实际上静态分量远大于动态分量
- 前述提到的平台式惯导,加计、陀螺敏感轴均与当地坐标系NED重合,符合上述输出。
常用坐标系
- 实用惯性坐标系
- 不随地球自转

-
地心地固坐标系(ECEF系)
- 随地球自转
- 随地球自转
-
导航坐标系 (当地坐标系)
- NED : 北东地
- ENU: 东北天
-
载体坐标系
- 前右下 – NED
- 右前上-- ENU
注:
- 载体系与当地导航坐标系的夹角即定义为载体姿态
- 载体系可以多个,如IMU系、车体系
传感器误差分类
/>
以零偏误差为例,即上图Bias

静态误差

- 随时间尺度的区间取值不同,静态误差的常值零偏、零偏稳定性、噪声均不同
动态误差

- 动态误差对惯导的影响远低于静态误差(零偏、噪声),动态误差工程上常以常值模型建模
噪声
噪声模型

白噪声参数模型

PSD功率谱密度是惯导的本质参数,相同的PSD对应相同程度发散的角度游走。
部分厂家带宽BW调低,但PSD不变,从RMS^2来看噪声低,但对惯导而言若PSD相同则无意义。
PSD由传感器设计决定
误差模型
陀螺白噪声与角度随机游走的关系


陀螺测量模型

加速度计测量模型

术语解释

牛老师惯导参数说明:
惯导传感器参数详细解读文章 新手入门系列1——如何区分惯性器件的零偏误差?
https://mp.weixin.qq.com/s/hpw_AkZR2zEa5HxnD8aKsg
新手入门系列2——如何读懂MEMS惯性器件的精度 指标?
https://mp.weixin.qq.com/s/IoyKmWUG92wBlrw1270ozw
误差模型的识别与参数辨识

-
重点介绍Allan方法
-
惯导的误差主要集中在低频部分(缓慢变化部分)-- 不同时间尺度的稳定性描述
-
若将不同尺度的Allan方差结果画成曲线,可以分析不同尺度的传感器数据稳定性结果
- 误差模型识别
-
提取方法
IEEE Std 647-1995, Annex C
-
惯性器件的标定
标定是对系统性误差/常值误差进行测定后补偿。


加速度计静态标定
- 两位置法

白噪声可以通过求平均消除,因为是静态测试所以带宽可以压的很低
-
两位置法带倾角的情况
-
六位置标定法 – 可标定交轴耦合N + 比例系数S + 零偏

陀螺仪标定
- 两位置法 – 零偏 比例因子

为了控制变量,两次观测可以使用相同的积分时间
- 六位置法 – 零偏 比例因子 交轴耦合
陀螺六位置法比较复杂,因为测单一轴时,其他两轴的观测也需要记录。但其他两轴的真值因为地球自转的投影时时刻刻在变化。
除非转台可以提供每时每刻的精密姿态角
标定方法总结

-
IMU的初始化标定工程方法