IIR数字滤波器C语言

1.模拟滤波器的设计

      1.1巴特沃斯滤波器的次数

        根据给定的参数设计模拟滤波器,然后进行变数变换,求取数字滤波器的方法,称为滤波器的间接设计。做为数字滤波器的设计基础的模拟滤波器,称之为原型滤波器。这里,我们首先介绍的是最简单最基础的原型滤波器,巴特沃斯低通滤波器。由于IIR滤波器不具有线性相位特性,因此不必考虑相位特性,直接考虑其振幅特性。
       在这里,N是滤波器的次数,Ωc是截止频率。从上式的振幅特性可以看出,这个是单调递减的函数,其振幅特性是不存在纹波的。设计的时候,一般需要先计算跟所需要设计参数相符合的次数N。首先,就需要先由阻带频率,计算出阻带衰减
将巴特沃斯低通滤波器的振幅特性,直接带入上式,则有
最后,可以解得次数N为
当然,这里的N只能为正数,因此,若结果为小数,则舍弃小数,向上取整。

      1.2巴特沃斯滤波器的传递函数

         巴特沃斯低通滤波器的传递函数,可由其振幅特性的分母多项式求得。其分母多项式

根据S解开,可以得到极点。这里,为了方便处理,我们分为两种情况去解这个方程。当N为偶数的时候,

这里,使用了欧拉公式。同样的,当N为奇数的时候,

同样的,这里也使用了欧拉公式。归纳以上,极点的解为

上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。

       1.3巴特沃斯滤波器的实现(C语言)

          首先,是次数的计算。次数的计算,我们可以由下式求得。
         

其对应的C语言程序

[cpp]  view
plain
copy

  1. N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /   
  2.             log10 (Stopband/Cotoff) ));  

         然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,

这样的话,实部与虚部就还可以分开来计算。其代码实现为

[cpp]  view
plain
copy

  1. typedef struct   
  2. {  
  3.     double Real_part;  
  4.     double Imag_Part;  
  5. } COMPLEX;  
  6.   
  7.   
  8. COMPLEX poles[N];  
  9.   
  10. for(k = 0;k <= ((2*N)-1) ; k++)  
  11. {  
  12.     if(Cotoff*cos((k+dk)*(pi/N)) < 0)  
  13.     {  
  14.         poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));  
  15.       poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));        
  16.         count++;  
  17.         if (count == N) break;  
  18.     }  
  19. }   


       计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样

这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,

[cpp]  view
plain
copy

  1. int Complex_Multiple(COMPLEX a,COMPLEX b,  
  2.                  double *Res_Real,double *Res_Imag)  
  3.       
  4. {  
  5.        *(Res_Real) =  (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);  
  6.        *(Res_Imag)=  (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);      
  7.      return (int)1;   
  8. }  

有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设

这个时候,其传递函数为

将其乘开,其大致的关系就像下图所示一样。

计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为

[cpp]  view
plain
copy

  1.  Res[0].Real_part = poles[0].Real_part;   
  2.  Res[0].Imag_Part= poles[0].Imag_Part;  
  3.  Res[1].Real_part = 1;   
  4.  Res[1].Imag_Part= 0;  
  5.   
  6. for(count_1 = 0;count_1 < N-1;count_1++)  
  7. {  
  8.   for(count = 0;count <= count_1 + 2;count++)  
  9.   {  
  10.       if(0 == count)  
  11.   {  
  12.               Complex_Multiple(Res[count], poles[count_1+1],  
  13.                    &(Res_Save[count].Real_part),  
  14.                    &(Res_Save[count].Imag_Part));  
  15.       }  
  16.       else if((count_1 + 2) == count)  
  17.       {  
  18.             Res_Save[count].Real_part  += Res[count - 1].Real_part;  
  19.     Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;  
  20.       }         
  21.    else   
  22.    {  
  23.               Complex_Multiple(Res[count], poles[count_1+1],  
  24.                    &(Res_Save[count].Real_part),  
  25.                    &(Res_Save[count].Imag_Part));                 
  26. 1     Res_Save[count].Real_part  += Res[count - 1].Real_part;  
  27.      Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;  
  28.   }  
  29.   }  
  30.    *(b+N) = *(a+N);  

到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。


2.双1次z变换

      2.1双1次z变换的原理

        我们为了将模拟滤波器转换为数字滤波器的,可以用的方法很多。这里着重说说双1次z变换。我们希望通过双1次z变换,建立一个s平面到z平面的映射关系,将模拟滤波器转换为数字滤波器。
        和之前的例子一样,我们假设有如下模拟滤波器的传递函数。
将其做拉普拉斯逆变换,可得到其时间域内的连续微分方程式,
其中,x(t)表示输入,y(t)表示输出。然后我们需要将其离散化,假设其采样周期是T,用差分方程去近似的替代微分方程,可以得到下面结果
然后使用z变换,再将其化简。可得到如下结果
从而,我们可以得到了s平面到z平面的映射关系,即
由于所有的高阶系统都可以视为一阶系统的并联,所以,这个映射关系在高阶系统中,也是成立的。
然后,将关系式
带入上式,可得
到这里,我们可以就可以得到Ω与ω的对应关系了。
         这里的Ω与ω的对应关系很重要。我们最终的目的设计的是数字滤波器,所以,设计时候给的参数必定是数字滤波器的指标。而我们通过间接设计设计IIR滤波器时候,首先是要设计模拟滤波器,再通过变换,得到数字滤波器。那么,我们首先需要做的,就是将数字滤波器的指标,转换为模拟滤波器的指标,基于这个指标去设计模拟滤波器。另外,这里的采样时间T的取值很随意,为了方便计算,一般取1s就可以。

       2.2双1次z变换的实现(C语言)

         我们设计好的巴特沃斯低通滤波器的传递函数如下所示。
     

我们将其进行双1次z变换,我们可以得到如下式子

可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。

[cpp]  view
plain
copy

  1. for(Count = 0;Count<=N;Count++)  
  2.     {         
  3.            for(Count_Z = 0;Count_Z <= N;Count_Z++)  
  4.             {  
  5.                  Res[Count_Z] = 0;  
  6.              Res_Save[Count_Z] = 0;    
  7.             }  
  8.                 Res_Save [0] = 1;  
  9.            for(Count_1 = 0; Count_1 < N-Count;Count_1++)  
  10.             {  
  11.               for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)  
  12.                 {  
  13.                     if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];      
  14.                   else if((Count_2 == (Count_1+1))&&(Count_1 != 0))    
  15.                             Res[Count_2] += -Res_Save[Count_2 - 1];   
  16.                   else  Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];  
  17.               for(Count_Z = 0;Count_Z<= N;Count_Z++)  
  18.                  {  
  19.                       Res_Save[Count_Z]  =  Res[Count_Z] ;  
  20.                      Res[Count_Z]  = 0;  
  21.                  }            
  22.             }  
  23.         for(Count_1 = (N-Count); Count_1 < N;Count_1++)  
  24.             {  
  25.                         for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)  
  26.                 {  
  27.                      if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值