1.模拟滤波器的设计
1.1巴特沃斯滤波器的次数
根据S解开,可以得到极点。这里,为了方便处理,我们分为两种情况去解这个方程。当N为偶数的时候,
这里,使用了欧拉公式。同样的,当N为奇数的时候,
同样的,这里也使用了欧拉公式。归纳以上,极点的解为
上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。
1.3巴特沃斯滤波器的实现(C语言)
其对应的C语言程序为
- N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /
- log10 (Stopband/Cotoff) ));
然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,
这样的话,实部与虚部就还可以分开来计算。其代码实现为
- typedef struct
- {
- double Real_part;
- double Imag_Part;
- } COMPLEX;
- COMPLEX poles[N];
- for(k = 0;k <= ((2*N)-1) ; k++)
- {
- if(Cotoff*cos((k+dk)*(pi/N)) < 0)
- {
- poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));
- poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));
- count++;
- if (count == N) break;
- }
- }
计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样
这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,
- int Complex_Multiple(COMPLEX a,COMPLEX b,
- double *Res_Real,double *Res_Imag)
- {
- *(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);
- *(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);
- return (int)1;
- }
有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设
这个时候,其传递函数为
将其乘开,其大致的关系就像下图所示一样。
计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为
- Res[0].Real_part = poles[0].Real_part;
- Res[0].Imag_Part= poles[0].Imag_Part;
- Res[1].Real_part = 1;
- Res[1].Imag_Part= 0;
- for(count_1 = 0;count_1 < N-1;count_1++)
- {
- for(count = 0;count <= count_1 + 2;count++)
- {
- if(0 == count)
- {
- Complex_Multiple(Res[count], poles[count_1+1],
- &(Res_Save[count].Real_part),
- &(Res_Save[count].Imag_Part));
- }
- else if((count_1 + 2) == count)
- {
- Res_Save[count].Real_part += Res[count - 1].Real_part;
- Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
- }
- else
- {
- Complex_Multiple(Res[count], poles[count_1+1],
- &(Res_Save[count].Real_part),
- &(Res_Save[count].Imag_Part));
- 1 Res_Save[count].Real_part += Res[count - 1].Real_part;
- Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;
- }
- }
- *(b+N) = *(a+N);
到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。
2.双1次z变换
可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。
- for(Count = 0;Count<=N;Count++)
- {
- for(Count_Z = 0;Count_Z <= N;Count_Z++)
- {
- Res[Count_Z] = 0;
- Res_Save[Count_Z] = 0;
- }
- Res_Save [0] = 1;
- for(Count_1 = 0; Count_1 < N-Count;Count_1++)
- {
- for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
- {
- if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2];
- else if((Count_2 == (Count_1+1))&&(Count_1 != 0))
- Res[Count_2] += -Res_Save[Count_2 - 1];
- else Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];
- for(Count_Z = 0;Count_Z<= N;Count_Z++)
- {
- Res_Save[Count_Z] = Res[Count_Z] ;
- Res[Count_Z] = 0;
- }
- }
- for(Count_1 = (N-Count); Count_1 < N;Count_1++)
- {
- for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)
- {
- if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2];