嵌入式人工智能(OpenCV-基于树莓派的人脸识别与入侵检测)

1、人脸识别

人脸识别是一种技术,通过检测、跟踪和识别人脸上的关键特征,以确认人脸的身份。它通常用于安保系统、身份验证、社交媒体和人机交互等领域。

人脸识别技术的基本原理是先通过图像处理和计算机视觉算法,提取人脸的特征点和特征描述。然后将这些特征与事先录入的人脸数据库进行比对,以确定人脸的身份。

在人脸识别技术中,一般包含以下步骤:人脸检测、人脸对齐、特征提取和特征匹配。人脸检测是指在图像或视频中检测到人脸的位置;人脸对齐是为了使得人脸特征点在后续处理中更容易提取;特征提取是指将人脸图像转换为具有辨识度的特征向量;特征匹配是将提取出的特征与数据库中的特征进行比对。

目前人脸检测的方法主要有两大类:基于知识和基于统计。

  • 基于知识的方法:主要利用先验知识将人脸看作器官特征的组合,根据眼睛、眉毛、嘴巴、鼻子等器官的特征以及相互之间的几何位置关系来检测人脸。主要包括模板匹配、人脸特征、形状与边缘、纹理特性、颜色特征等方法。
  • 基于统计的方法:将人脸看作一个整体的模式——二维像素矩阵,从统计的观点通过大量人脸图像样本构造人脸模式空间,根据相似度量来判断人脸是否存在。主要包括主成分分析与特征脸、神经网络方法、支持向量机、隐马尔可夫模型、Adaboost算法等。

人脸识别技术的应用非常广泛,包括但不限于身份识别、门禁系统、公安系统、智能手机解锁、相册分类、人机交互等。随着深度学习的快速发展,人脸识别技术的准确率和效果得到了显著提升,越来越多的领域开始应用这项技术。然而,人脸识别技术也涉及到一些隐私和安全问题,需要合理的使用和管理。

2、OpenCV之Haar级联检测器

人脸识别在OpenCV上也有专门的算法实现,OpenCV使用基于Haar特征的级联分类器,对级联分类器进行特定的训练可以使OpenCV自带的检测器在检测时的结果更加准确。这里的检测器即OpenCV包中的haarcascades文件夹下的XML文件。这些文件可以检测静止的图像或摄像头中得到的人脸。

opencv中内置了已经训练好的级联人脸、眼睛、嘴部等检测器,以.XML格式存储,可以将它们应用于图片及实时视频流的检测。opencv的人脸检测级联检测器是最稳定和准确的,但在许多情况下眼睛检测和嘴巴检测的效果要差上许多。如果要对眼睛和嘴巴进行检测,可以尝试python、dlib、opencv工作流,它的效果更好、速度更快。
Haar级联算法是OpenCV最流行的目标检测算法,主要优点是速度快,尽管许多算法(如HOG+线性SVM、SSDs、更快的R-CNN、YOLO等等)比Haar级联算法更精确。但如果需要纯粹的速度,就是无法打败OpenCV的Haar cascades。Haar级联的缺点是容易出现假阳性检测,应用于推理/检测时需要进行参数调整。

haarcascade_frontalface_default.xml:检测面部
haarcascade_eye.xml:检测左眼和右眼
haarcascade_smile.xml:检测面部是否存在嘴部
haarcascade_eye_tree_eyeglasses.xml:检测是否带墨镜
haarcascade_frontalcatfac

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值