§9 各种特殊类型的环
下面介绍环的一些重要类型:
定义1.9.1(幺环)
具有单位元素的环称为幺环,其单位元素简记为 111 .
设 LLL 为一个环。若 LLL 中有一元素 eee 具有性质:
ea=ae=a,∀a∈L,ea = ae = a, \forall a \in L,ea=ae=a,∀a∈L,
则称 eee 为环 LLL 的单位元素。
定义1.9.2(单位)
若幺环 LLL 的一对元素 a,ba,ba,b 满足 ab=1ab = 1ab=1,则 b(a)b(a)b(a) 称为 a(b)a(b)a(b) 的右(左)逆。
若 aaa 既有左逆又有右逆,则 aaa 的左、右逆相等,简称为 aaa的逆。 此时 aaa 称为 LLL 的一个可逆元素,也成为 LLL 的一个单位。
定义1.9.3(零因子)
设 a∈L,a≠0.a \in L,a \neq 0.a∈L,a=0. 若有元素 b∈L,b≠0b \in L, b \neq 0b∈L,b=0,使 ab=0ab = 0ab=0,则元素 aaa 称为一个左零因子。同样地,可以定义右零因子
若在环 LLL 中不存在零因子,则在环 LLL 中消去律成立。
定义1.9.4(交换环)
环对加法满足交换律,因为所有的环都是Abel群。若环 LLL 对乘法满足交换律,则 LLL 称为交换环。
定义1.9.5(整环)
无零因子的交换幺环,且 1≠01 \neq 01=0,称为整环。显然,整数环 Z\mathbb{Z}Z 是整环。
定义1.9.6(域)
若环 FFF 是交换幺环,且至少含有两个元素,且全体非零元素对乘法成一个群,则环 FFF 称为域。
域 FFF 的全体非零元素对乘法成一个交换群意味着: FFF 中每个非零元素都有逆元素。从而知:域中没有零因子,从而域一定是整环。
定理1.9.1
有限整环是域。
证明
设 LLL 为含有 nnn 个元素的整环,其元素为:
a1,a2,⋯ ,an,其中a1=1.a_{1},a_{2},\dotsb,a_{n},其中a_{1} = 1.a1,a2,⋯,an,其中a1=1.
取 LLL 中任一非零元素 aaa,作元素:
aa1,aa2,⋯ ,aan.aa_{1},aa_{2}, \dotsb,aa_{n}.aa1,aa2,⋯,aan.
由消去律知:这 nnn个元素一定是两两不同的。由他们的个数知:这些元素就是 LLL 的全部元素,故其中必有 111 。即:
对每一个给定的 a∈La \in La∈L,存在一个数 iii,使得 aai=1.aa_{i} = 1.aai=1.
由 aaa 的任意性知: LLL 中每个元素都有与之对应的逆元素。因而 LLL 是域。■\blacksquare■
定义1.9.7(子域)
若域 FFF 的一个子环 SSS 是域,则称 SSS 是 FFF 的一个子域。
定义1.9.8(体)
若环 LLL 是幺环,且至少含有两个元素,且全体非零元素对乘法成一个群,则称 LLL 为体。