pytorch conv1d原理说明

本文详细介绍了conv1d一维卷积层的工作原理及其应用。解释了如何通过调整参数来改变输出尺寸,并提供了具体实例帮助理解。适用于自然语言处理等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理说明

在这里插入图片描述
总结:conv1d对最后一个维度进行卷积,以文本为例,conv1d是将文本的序列维度和embedding维度进行压缩,序列长度这一维按照正常卷积,embeding这一维由设置根据输出的outchannel决定,此处设置的是1,一般计算前,请将序列这一维度permute到最后一维,embedding这一维度调整到倒数第二维。

conv1d官方接口

官方接口中关于输出的大小的计算公式如下:
在这里插入图片描述

参见【原理说明】这一节的图,我们假设输入为7*5,那么:

  • kernel_size 卷积核大小为2/3/4
  • N 为batchsize
  • dilation 为卷积核内部某一纬度相邻元素的差值,默认为1
  • padding 为填充大小,为调整输入大小的一个参数,默认0
  • Cin 和Cout 为channel大小,Cin为输入文本通道即为embedding大小5,Cout即为卷积产生的通道数,这里就是指卷积核的个数,这里都是了2
  • Lin 就是输入的维度大小,Lin=7,即就是句子的长度,Lout就是Lin维度对应的输出维度大小

尝试按照如上公式计算下Lout:

  • 当kernel_size=2时,即实际计算是用的 2x5这个核计算的(5就是最后一个维度的大小,将最后一维抹平为1维)
    Lout=[( 7+2×0-1*(2-1)-1 )/1 + 1] = 6,同理可得 kernel_size=3、4时,Lout=5、4,如下图所示的位置。
    在这里插入图片描述
    仅供参考,如有疑问,欢迎交流。
Ref:

https://blog.csdn.net/sunny_xsc1994/article/details/82969867

官方api说明

关于channel的说明,见:https://www.cnblogs.com/Terrypython/p/10310531.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值