【论文阅读】Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics

本文介绍了一种基于贝叶斯神经网络的方法来动态调整多任务学习中的Loss权重。通过考虑任务间的不确定性,该方法能自动调整不同任务的相对重要性,避免了手动设置权重的耗时耗力过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景

目前,很多应用中都因为用了多任务取得了不错的效果,那么如何将这些任务的loss有机组合在一起?

一种简答粗暴方法就是手动调节多任务之间的loss的相对权重,然后加和,如下:

这种方式把权重作为超参调试的方式,往往耗时耗力。

本文参考[1]就如何动态设置多任务(分类与回归)之间的loss的相对权重做简单介绍。

2.解决方案

在贝叶斯建模中,认为模型有一些不确定性(随机变量),可能是先验问题导致的,也有可能是后验问题导致的,大体可将其分为两种,如下:

  • 认知不确定性:数据不足导致的模型学习不足的不确定性,比如:小学生去参加高考,很多知识都没学过,自然考不好。
  • 偶然不确定性:噪声导致的不确定性

偶然不确定性又分为:

  • 数据依赖不确定性(异方差):输入数据的不确定性,导致输出不确定,比如:小明学习使用的教材部分有问题,导致小明考试考不到高分。
  • 任务依赖不确定性(同方差):不同任务自身的学习能力的不同,导致学习结果不确定性。比如:小明为了提高成绩,一方面努力学习知识概念,另一方面猛做练习题,他们都有各自的优势,但是也都有一定的局限性。

在这里插入图片描述

其中,同方差 指的是假定数据输入一定的情况下,真实的分布与任务的输出之间有一个恒定的方差。

解决方案为什么考虑的用贝叶斯NN?贝叶斯建模中的不确定性能够表示不同任务之间的难易程度,能够很好的为任务的输出f,真实分布y以及方差δ之间建模。

动态loss权重就是考虑在同方差条件下,接下来我们如何建模展开。

3 建模

假设输入为XXX,参数矩阵为WWW,输出为fW(x)f^W(x)fW(x),真实分布为yyy

3.1 回归任务

对于回归任务,在给定其输出fW(x)f^W(x)fW(x)的情况下yyy的概率为高斯似然

(对于高斯似然,σσσ为模型的观测噪声参数,表示输出数据中的噪声量)

fW(x)f^W(x)fW(x)yyy代入上述高斯函数中,可得:
p(y∣fW(x))=12πσe−(y−fW(x))22σ2p(y|f^W(x))=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-f^W(x))^2}{2\sigma^2}}p(yfW(x))=2πσ1e2σ2(yfW(x))2

两边求对数,可得其对数似然函数,如下:

logp(y∣fW(x))∝−(y−fW(x))22σ2−logσlogp(y|f^W(x))\propto-\frac{(y-f^W(x))^2}{2\sigma^2}-log\sigmalogp(yfW(x))2σ2(yfW(x))2logσ

3.2 分类任务

对于分类任务,为了建立起与σσσ的关系,其概率描述为softmax的一种更为普遍的表示形式Boltzmann分布,也叫吉布斯分布:

系数σσσ可以是设定的,也可以是通过学习得到的,决定离散分布的平坦程度。该值和分布的不确定性(熵)有关。

同理,将fW(x)f^W(x)fW(x)yyy代入上述softmax函数中,可得对数似然函数,如下:

其中,c为某一类别

3.3 多任务

对于回归与分类任务混合的多任务似然,假定y1y_1y1、…、yky_kyk分别为回归任务和分类任务的真实输出,其似然为:

那么,假设多任务的loss记作L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2),那么则有:
= L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2)
= −logN(y1;fW(x),σ12)⋅softmax(y2=c;fW(x),σ2)-logN(y_1;f^W(x),\sigma ^2_1)\cdot softmax(y_2=c;f^W(x),\sigma _2)logN(y1;fW(x),σ12)softmax(y2=c;fW(x),σ2)
= 12σ12∥y1−fW(x)∥2+logσ1−logp(y2=c∣fW(x),σ2)\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 + log\sigma_1 - logp(y_2=c|f^W(x),\sigma_2)2σ121y1fW(x)2+logσ1logp(y2=cfW(x),σ2)
= 12σ12∥y1−fW(x)∥2+logσ1−1σ22fc′W(x)+log∑c′e1σ22fc′W(x)\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 + log\sigma_1 - \frac{1}{\sigma_2^2}f_{c{'}}^W(x)+log\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}}2σ121y1fW(x)2+logσ1σ221fcW(x)+logceσ221fcW(x)
= 12σ12∥y1−fW(x)∥2+logσ1+1σ22log∑c′efc′W(x)−1σ22fc′W(x)+log∑c′e1σ22fc′W(x)−1σ22log∑c′efc′W(x)\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 + log\sigma_1 + \frac{1}{\sigma ^2_2}log\sum_{c{'}}e^{f_{c{'}}^W(x)} - \frac{1}{\sigma_2^2}f_{c{'}}^W(x)+ log\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}}- \frac{1}{\sigma ^2_2}log\sum_{c{'}}e^{f_{c{'}}^W(x)}2σ121y1fW(x)2+logσ1+σ221logcefcW(x)σ221fcW(x)+logceσ221fcW(x)σ221logcefcW(x)
=12σ12∥y1−fW(x)∥2+logσ1−1σ22log softmax(y2,fW(x))+log∑c′e1σ22fc′W(x)−1σ22log∑c′efc′W(x)\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 +log\sigma_1 - \frac{1}{\sigma_2^2}log \ softmax(y_2,f^W(x))+ log\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}}- \frac{1}{\sigma ^2_2}log\sum_{c{'}}e^{f_{c{'}}^W(x)}2σ121y1fW(x)2+logσ1σ221log softmax(y2,fW(x))+logceσ221fcW(x)σ221logcefcW(x)
= 12σ12∥y1−fW(x)∥2+logσ1−1σ22log softmax(y2,fW(x))+log∑c′e1σ22fc′W(x)(∑c′efc′W(x))1σ22\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 +log\sigma_1 - \frac{1}{\sigma_2^2}log \ softmax(y_2,f^W(x)) + log\frac{\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}}}{(\sum_{c{'}}e^{f_{c{'}}^W(x)})^\frac{1}{\sigma_2^2}}2σ121y1fW(x)2+logσ1σ221log softmax(y2,fW(x))+log(cefcW(x))σ221ceσ221fcW(x)

由于当σ2\sigma_2σ2->1时,有1σ2∑c′e1σ22fc′W(x)\frac{1}{\sigma_2}\sum_{c{'}}e^{\frac{1}{\sigma^2_2} {f_{c{'}}^W(x)}}σ21ceσ221fcW(x)(∑c′e1σ22fc′W(x))1σ2(\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}})^\frac{1}{\sigma_2}(ceσ221fcW(x))σ21
所以上式最后一个log∑c′e1σ22fc′W(x)(∑c′efc′W(x))1σ22≈logσ2log\frac{\sum_{c{'}}e^{\frac{1}{\sigma^2_2}{f_{c{'}}^W(x)}}}{(\sum_{c{'}}e^{f_{c{'}}^W(x)})^\frac{1}{\sigma_2^2}} \approx log\sigma_2log(cefcW(x))σ221ceσ221fcW(x)logσ2
则有: L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2)12σ12∥y1−fW(x)∥2+logσ1−1σ22log softmax(y2,fW(x))+logσ2\frac{1}{2\sigma ^2_1}\left \| y_1 - f^W(x) \right \|^2 +log\sigma_1 - \frac{1}{\sigma_2^2}log \ softmax(y_2,f^W(x)) + log\sigma_22σ121y1fW(x)2+logσ1σ221log softmax(y2,fW(x))+logσ2

L1(W)=∥y1−fW(x)∥2L_1(W)=\left \| y_1 - f^W(x) \right \|^2L1(W)=y1fW(x)2为回归问题的loss,L2(W)=−log(softmax(y2,fW(x)))L_2(W)=-log(softmax(y_2,f^W(x)))L2(W)=log(softmax(y2,fW(x)))为分类问题的loss,则有多任务loss为

L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2)12σ12L1(W)+logσ1+1σ22L2(W)+logσ2\frac{1}{2\sigma ^2_1}L_1(W)+log\sigma_1 + \frac{1}{\sigma_2^2}L_2(W)+ log\sigma_22σ121L1(W)+logσ1+σ221L2(W)+logσ2

4.代码实现

实际实现中,为了防止分母出现0,提升数值的稳定性以及简化计算,回归loss的系数去掉了12\frac{1}{2}21,如下:

L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2)1σ12L1(W)+1σ22L2(W)+2logσ1+2logσ2\frac{1}{\sigma ^2_1}L_1(W) + \frac{1}{\sigma_2^2}L_2(W)+2log\sigma_1+ 2log\sigma_2σ121L1(W)+σ221L2(W)+2logσ1+2logσ2

并且,一般令s=logσ2s=log\sigma^2s=logσ2,上式可以化简为:

L(W,σ1,σ2)L(W,\sigma_1 ,\sigma_2 )L(W,σ1,σ2)e−s1L1(W)+e−s2L2(W)+s1+s2e^{-s1}L_1(W)+ e^{-s2}L_2(W)+s1+s2es1L1(W)+es2L2(W)+s1+s2

pytorch代码实现如下:

class DynamicWeightedLoss(nn.Module):
    def __init__(self, num=2):
        super(DynamicWeightedLoss, self).__init__()
        params = torch.ones(num, requires_grad=True)
        self.params = torch.nn.Parameter(params)

    def forward(self, *x):
        loss_sum = 0
        for i, loss in enumerate(x):
            loss_sum += torch.exp(-self.params[i]) * loss 
            + self.params[i]
        return loss_sum

论文[2]对论文[1]做了loss的正则项做了优化,它的loss如下:
L(W,σ1,σ2)=12σ12L1(W)+12σ22L2(W)+log(σ12+1)+log(σ22+1)L(W,\sigma_1 ,\sigma_2 ) = \frac{1}{2\sigma ^2_1}L_1(W) + \frac{1}{2\sigma_2^2}L_2(W)+log(\sigma_1^2+1)+ log(\sigma_2^2+1)L(W,σ1,σ2)=2σ121L1(W)+2σ221L2(W)+log(σ12+1)+log(σ22+1)
其pytroch代码实现如下:

class DynamicWeightedLoss(nn.Module):
    def __init__(self, num=2):
        super(DynamicWeightedLoss, self).__init__()
        params = torch.ones(num, requires_grad=True)
        self.params = torch.nn.Parameter(params)

    def forward(self, *x):
        loss_sum = 0
        for i, loss in enumerate(x):
            loss_sum += 0.5 / (self.params[i] ** 2) * loss 
            + torch.log(1 + self.params[i] ** 2)
        return loss_sum

5.进一步了解

如果还想对贝叶斯不确定性进一步了解,可以阅读reference部分的论文[3],如果还想对动态loss以及多任务进一步了解可以阅读综述性文章[4,5]以及一些经典的多任务论文[6,7,8]。

reference:

[1].Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
[2].Auxiliary Tasks in Multi-task Learning
[3].What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
[4].An Overview of Multi-Task Learning in Deep Neural Networks.pdf
[5].https://zhuanlan.zhihu.com/p/269492239
[6].Multi-Task Learning as Multi-Objective Optimization
[7].MMOE
[8].SNR

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值