关于周志华《机器学习》中假设空间规模大小65的计算

这篇博客探讨了如何从3个特征中通过不同的组合方式抽取规则,以定义优质瓜的标准。总共计算出65种可能的情况,包括选取1个、2个或3个特征,以及不使用特征或全否定的情况。通过引入通配符,进一步阐述了整体考虑问题的方法,从而得出相同的结论。这展示了在机器学习中特征选择的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们想要从所有可能性中抽取一条规则来定义什么瓜是好瓜。而我们的假设空间则包含所有可能性。

这里我们可以从两个角度得到最终结果65。

一、分别考虑
现在我们一共有3个特征,如果我们只需要从3个特征中选取一个特征中作为最终的结果(这意味着剩余两个特征无关紧要),我们一共有3*3=9种可能;

如果我们需要从3个特征中选取2个特征作为最终的结果,则一共有C23∗3∗3=27种可能;

如果我们需要从3个特征中选取3个特征作为最终的结果,则一共有3∗3∗3=27种可能;

如果我们一个特征都不需要,恒真,则为一种可能;

如果我们发现什么特征都没有用,恒假,则为另外一种可能;

综上一共有65种可能。

二、 整体考虑
我们像周志华老师书中提到的一样,引入通配符,作为这个特征无关紧要的标志。

因此(∗+3个属性)(∗+3个属性)(∗+3个属性)+恒假=65种可能;

以上便是两种得到65的思路。

### 周志华机器学习》课后习题答案 对于周志华机器学习》书中第一章的部分习题解答如下: #### 表1.1中若只包含编号为1和4的两个样例,试给出相应的版本空间 当表1.1仅保留编号为1和4的样例时,版本空间是指所有能与这两个样例相一致的假设集合。由于只有两个样例,因此可以构建出较为具体的版本空间描述[^1]。 ```python # Python伪代码展示如何枚举可能的假设组合 def generate_version_space(): attributes = ['Sunny', 'Warm', '?', 'Normal', 'Young'] version_space = [] # 枚举满足条件的假设 for sky in ['Sunny', '?']: for temperature in ['Warm', '?']: for humidity in ['?', 'High', 'Normal']: for wind in ['Strong', '?']: for water in ['Warm', '?']: for forecast in ['Same', '?']: hypothesis = [sky, temperature, humidity, wind, water, forecast] # 判断该假设是否符合给定的正实例 if (hypothesis[:3] == ['Sunny', 'Warm', 'Normal'] or '?' in hypothesis[:3]) and \ (hypothesis[-2:] == ['Warm', 'Same'] or '?' in hypothesis[-2:]): version_space.append(hypothesis) return version_space ``` 上述Python伪代码展示了如何通过编程方式来列举符合条件的假设列表,从而形成版本空间的一部分。 #### 若数据包含噪声,则假设空间中有可能不存在与所有训练样本都一致的假设,在此情形下,试设计一种归纳偏好用于假设选择 面对含噪数据的情况,可以选择引入某种形式的归纳偏置或偏好原则来进行更稳健的学习过程。例如,采用奥卡姆剃刀原理(Occam's Razor),即倾向于选择最简单的解释作为最终模型;或是基于最大似然估计(Maximum Likelihood Estimation)的方法去挑选那些能够最大化观察到的数据概率分布下的参数配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值