http://www.quora.com/What-is-data-science 数据科学是什么?
http://www.quora.com/How-do-I-become-a-data-scientist 我怎样才能成为一个数据科学家?
http://www.quora.com/Data-Science/How-does-data-science-differ-from-traditional-statistical-analysis 科学数据是如何从传统的统计分析不同吗?
相关课程
http://statistics.berkeley.edu/classes/s133/ 计算数据概念,伯克利分校
http://www.cs.berkeley.edu/~jordan/courses/294-fall09/ 实用机器学习,伯克利分校
http://inst.eecs.berkeley.edu/~cs188 人工智能伯克利分校
http://courses.ischool.berkeley.edu/i290-dma/s12/doku.php 数据挖掘和分析的智能商务服务,伯克利
http://courses.ischool.berkeley.edu/i296a-dsa/s12 数据科学及分析:思想领袖,伯克利
http://ml-class.org/ 机器学习,斯坦福大学
http://www-stat.stanford.edu/~naras/stat290 范式的计算数据,斯坦福大学
http://www.stanford.edu/class/cs246/cs246-11-mmds 挖掘大型数据集,斯坦福大学
https://graphics.stanford.edu/wikis/cs448b-10-fall 数据可视化,斯坦福大学
http://www.stanford.edu/class/cs369m/ 海量数据集分析,斯坦福大学的算法
http://hci.stanford.edu/courses/cs448g/ 交互式数据分析,斯坦福大学的研究主题
http://www.stanford.edu/class/stats202/ 数据挖掘,斯坦福大学
http://www.cs.cmu.edu/~epxing/Class/10701/lecture.html 机器学习,债务工具中央结算系统
http://www.stat.cmu.edu/~cshalizi/statcomp/ 统计计算,债务工具中央结算系统
http://malt.ml.cmu.edu/mw/index.php/Syllabus_for_Machine_Learning_with_Large_Datasets_10-605_in_Spring_2012 对于大型数据集的机器学习,债务工具中央结算系统
http://www.mit.edu/~9.520/ 统计学习理论及应用,MIT
http://dataiap.github.com/dataiap/ 数据素养,麻省理工学院
https://wiki.engr.illinois.edu/display/cs412 数据挖掘,UIUC
http://work.caltech.edu/telecourse.html 数据,加州理工学院学习
http://www.umiacs.umd.edu/~jimmylin/cloud-2010-Spring 数据密集的信息处理应用,马里兰大学
http://www.cs.columbia.edu/~coms699812/ 处理海量数据,哥伦比亚
http://jakehofman.com/ddm/ 数据驱动的建模,哥伦比亚
http://www.cc.gatech.edu/~agray/4245fall10/ 数据挖掘和分析,佐治亚理工学院
http://www.cc.gatech.edu/~agray/6740fall09 计算数据分析:机器学习和大的基础,佐治亚理工学院
http://had.co.nz/stat480/ 爱荷华州立大学应用统计计算,
http://had.co.nz/stat645/ 数据可视化
http://www.cs.nyu.edu/courses/spring08/G22.3033-003/index.html 数据仓库与数据挖掘,NYU
http://chem-eng.utoronto.ca/~datamining/DataMiningCourse.htm 数据挖掘技术在工程,多伦多
http://sli.ics.uci.edu/Classes/2011W-178 机器学习与数据挖掘,加州大学欧文分校
http://users.csc.calpoly.edu/~dekhtyar/466-Fall2010/ 数据的知识发现,卡尔波利
http://www.cise.ufl.edu/class/cis6930fa11lad/ 数据科学:大型高级数据分析,美国佛罗里达大学
http://uni-leipzig.de/~strimmer/lab/courses/ss09/current-topics/ 统计数据分析的Universitat莱比锡的策略
相关的研讨会
http://strataconf.com/strata2011/public/schedule/detail/17164 数据训练营,地层2011
http://learning.stat.purdue.edu/mlss/mlss/start 2011年,普渡大学的机器学习暑期学校
http://lookingatdata.com/ 了解数据
书籍
http://www.amazon.com/Analytics-Work-Smarter-Decisions-Results/dp/1422177696 Google Analytics(分析)工作
http://www.amazon.com/Numerati-Stephen-Baker/dp/0547247931/ The Numerati
http://oreilly.com/catalog/0636920018254/ 数据源手册
http://oreilly.com/catalog/9780596529321/ 集体智慧编程
http://oreilly.com/catalog/0636920010203 挖掘社会网络
http://oreilly.com/catalog/9780596802363/ 数据分析与开放源码工具
http://oreilly.com/catalog/9780596514556/ 可视化数据
http://www.edwardtufte.com/tufte/books_vdqi 定量信息的可视化显示
http://www.edwardtufte.com/tufte/books_ei 展望信息
http://www.edwardtufte.com/tufte/books_visex 视觉说明:图片和数量,证据和叙事
http://www.edwardtufte.com/tufte/books_be 美丽的证据
http://www.greenteapress.com/thinkstats/ 思考统计
http://www.amazon.com/Analysis-Regression-Multilevel-Hierarchical-Models/dp/052168689X 数据回归分析和多级/分层模型
http://www.amazon.com/gp/product/0195152964/ 应用纵向数据分析
http://infolab.stanford.edu/~ullman/mmds/book.pdf 挖掘海量数据集
http://www.amazon.com/Data-Analysis-Learned-Probability-Statistics/dp/1118010647 数据分析:从近50年来可以学到什么
http://www.amazon.com/gp/product/0691057826/ 数据分析的实践
视频
http://www.ted.com/talks/lies_damned_lies_and_statistics_about_tedtalks.html 谎言,该死的谎言和统计数据
http://www.gapminder.org/videos/the-joy-of-stats/ 喜的统计资料
http://datajournalism.stanford.edu/ 新闻中的年龄数据