机器学习理论与实战(六)支持向量机

本文详细介绍了支持向量机(SVM)在非线性分类任务中的改进方法,包括引入松弛变量处理非线性可分数据、核函数的应用以实现高维空间线性可分等核心内容。通过理论推导和实例分析,展示了如何在允许部分样本错误分类的情况下,最大化间隔距离并控制模型复杂度,进而有效提升分类性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量alpha的求解问题,求出了alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性可分的,这样求出的alpha在[0,infinite]。但是如果数据不是线性可分的呢?此时我们就要允许部分的样本可以越过分类器,这样优化的目标函数就可以不变,只要引入松弛变量 即可,它表示错分类样本点的代价,分类正确时它等于0,当分类错误时 ,其中Tn表示样本的真实标签-1或者1,回顾上节中,我们把支持向量到分类器的距离固定为1,因此两类的支持向量间的距离肯定大于1的,当分类错误时 肯定也大于1,如(图五)所示(这里公式和图标序号都接上一节)。


(图五)

这样有了错分类的代价,我们把上节(公式四)的目标函数上添加上这一项错分类代价,得到如(公式八)的形式:

(公式八)

重复上节的拉格朗日乘子法步骤,得到(公式九):

(公式九)

多了一个Un乘子,当然我们的工作就是继续求解此目标函数,继续重复上节的步骤,求导得到(公式十):


(公式十)

又因为alpha大于0,而且Un大于0,所以0<alpha<C,为了解释的清晰一些,我们把(公式九)的KKT条件也发出来(上节中的第三类优化问题),注意Un是大于等于0

推导到现在,优化函数的形式基本没变,只是多了一项错分类的价值,但是多了一个条件,0<alpha<C,C是一个常数,它的作用就是在允许有错误分类的情况下,控制最大化间距,它太大了会导致过拟合,太小了会导致欠拟合。接下来的步骤貌似大家都应该知道了,多了一个C常量的限制条件,然后继续用SMO算法优化求解二次规划,但是我想继续把核函数也一次说了,如果样本线性不可分,引入核函数后,把样本映射到高维空间就可以线性可分,如(图六)所示的线性不可分的样本:

(图六)

在(图六)中,现有的样本是很明显线性不可分,但是加入我们利用现有的样本X之间作些不同的运算,如(图六)右边所示的样子,而让f作为新的样本(或者说新的特征)是不是更好些?现在把X已经投射到高维度上去了,但是f我们不知道,此时核函数就该上场了,以高斯核函数为例,在(图七)中选几个样本点作为基准点,来利用核函数计算f,如(图七)所示:

(图七)

这样就有了f,而核函数此时相当于对样本的X和基准点一个度量,做权重衰减,形成依赖于x的新的特征f,把f放在上面说的SVM中继续求解alpha,然后得出权重就行了,原理很简单吧,为了显得有点学术味道,把核函数也做个样子加入目标函数中去吧,如(公式十一)所示:


(公式十一)


其中K(Xn,Xm)是核函数,和上面目标函数比没有多大的变化,用SMO优化求解就行了,代码如下:

  1. def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO
  2. oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
  3. iter = 0
  4. entireSet = True; alphaPairsChanged = 0
  5. while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
  6. alphaPairsChanged = 0
  7. if entireSet: #go over all
  8. for i in range(oS.m):
  9. alphaPairsChanged += innerL(i,oS)
  10. print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  11. iter += 1
  12. else:#go over non-bound (railed) alphas
  13. nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
  14. for i in nonBoundIs:
  15. alphaPairsChanged += innerL(i,oS)
  16. print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  17. iter += 1
  18. if entireSet: entireSet = False #toggle entire set loop
  19. elif (alphaPairsChanged == 0): entireSet = True
  20. print "iteration number: %d" % iter
  21. return oS.b,oS.alphas
def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas

下面演示一个小例子,手写识别。

(1)收集数据:提供文本文件

(2)准备数据:基于二值图像构造向量

(3)分析数据:对图像向量进行目测

(4)训练算法:采用两种不同的核函数,并对径向基函数采用不同的设置来运行SMO算法。

(5)测试算法:编写一个函数来测试不同的核函数,并计算错误率

(6)使用算法:一个图像识别的完整应用还需要一些图像处理的只是,此demo略。

完整代码如下:

  1. from numpy import *
  2. from time import sleep
  3. def loadDataSet(fileName):
  4. dataMat = []; labelMat = []
  5. fr = open(fileName)
  6. for line in fr.readlines():
  7. lineArr = line.strip().split('\t')
  8. dataMat.append([float(lineArr[0]), float(lineArr[1])])
  9. labelMat.append(float(lineArr[2]))
  10. return dataMat,labelMat
  11. def selectJrand(i,m):
  12. j=i #we want to select any J not equal to i
  13. while (j==i):
  14. j = int(random.uniform(0,m))
  15. return j
  16. def clipAlpha(aj,H,L):
  17. if aj > H:
  18. aj = H
  19. if L > aj:
  20. aj = L
  21. return aj
  22. def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
  23. dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
  24. b = 0; m,n = shape(dataMatrix)
  25. alphas = mat(zeros((m,1)))
  26. iter = 0
  27. while (iter < maxIter):
  28. alphaPairsChanged = 0
  29. for i in range(m):
  30. fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
  31. Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
  32. if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
  33. j = selectJrand(i,m)
  34. fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
  35. Ej = fXj - float(labelMat[j])
  36. alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
  37. if (labelMat[i] != labelMat[j]):
  38. L = max(0, alphas[j] - alphas[i])
  39. H = min(C, C + alphas[j] - alphas[i])
  40. else:
  41. L = max(0, alphas[j] + alphas[i] - C)
  42. H = min(C, alphas[j] + alphas[i])
  43. if L==H: print "L==H"; continue
  44. eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
  45. if eta >= 0: print "eta>=0"; continue
  46. alphas[j] -= labelMat[j]*(Ei - Ej)/eta
  47. alphas[j] = clipAlpha(alphas[j],H,L)
  48. if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
  49. alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
  50. #the update is in the oppostie direction
  51. b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
  52. b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
  53. if (0 < alphas[i]) and (C > alphas[i]): b = b1
  54. elif (0 < alphas[j]) and (C > alphas[j]): b = b2
  55. else: b = (b1 + b2)/2.0
  56. alphaPairsChanged += 1
  57. print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  58. if (alphaPairsChanged == 0): iter += 1
  59. else: iter = 0
  60. print "iteration number: %d" % iter
  61. return b,alphas
  62. def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
  63. m,n = shape(X)
  64. K = mat(zeros((m,1)))
  65. if kTup[0]=='lin': K = X * A.T #linear kernel
  66. elif kTup[0]=='rbf':
  67. for j in range(m):
  68. deltaRow = X[j,:] - A
  69. K[j] = deltaRow*deltaRow.T
  70. K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
  71. else: raise NameError('Houston We Have a Problem -- \
  72. That Kernel is not recognized')
  73. return K
  74. class optStruct:
  75. def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters
  76. self.X = dataMatIn
  77. self.labelMat = classLabels
  78. self.C = C
  79. self.tol = toler
  80. self.m = shape(dataMatIn)[0]
  81. self.alphas = mat(zeros((self.m,1)))
  82. self.b = 0
  83. self.eCache = mat(zeros((self.m,2))) #first column is valid flag
  84. self.K = mat(zeros((self.m,self.m)))
  85. for i in range(self.m):
  86. self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
  87. def calcEk(oS, k):
  88. fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
  89. Ek = fXk - float(oS.labelMat[k])
  90. return Ek
  91. def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej
  92. maxK = -1; maxDeltaE = 0; Ej = 0
  93. oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
  94. validEcacheList = nonzero(oS.eCache[:,0].A)[0]
  95. if (len(validEcacheList)) > 1:
  96. for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
  97. if k == i: continue #don't calc for i, waste of time
  98. Ek = calcEk(oS, k)
  99. deltaE = abs(Ei - Ek)
  100. if (deltaE > maxDeltaE):
  101. maxK = k; maxDeltaE = deltaE; Ej = Ek
  102. return maxK, Ej
  103. else: #in this case (first time around) we don't have any valid eCache values
  104. j = selectJrand(i, oS.m)
  105. Ej = calcEk(oS, j)
  106. return j, Ej
  107. def updateEk(oS, k):#after any alpha has changed update the new value in the cache
  108. Ek = calcEk(oS, k)
  109. oS.eCache[k] = [1,Ek]
  110. def innerL(i, oS):
  111. Ei = calcEk(oS, i)
  112. if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
  113. j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
  114. alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
  115. if (oS.labelMat[i] != oS.labelMat[j]):
  116. L = max(0, oS.alphas[j] - oS.alphas[i])
  117. H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
  118. else:
  119. L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
  120. H = min(oS.C, oS.alphas[j] + oS.alphas[i])
  121. if L==H: print "L==H"; return 0
  122. eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
  123. if eta >= 0: print "eta>=0"; return 0
  124. oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
  125. oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
  126. updateEk(oS, j) #added this for the Ecache
  127. if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
  128. oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
  129. updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction
  130. b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
  131. b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
  132. if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
  133. elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
  134. else: oS.b = (b1 + b2)/2.0
  135. return 1
  136. else: return 0
  137. def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO
  138. oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
  139. iter = 0
  140. entireSet = True; alphaPairsChanged = 0
  141. while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
  142. alphaPairsChanged = 0
  143. if entireSet: #go over all
  144. for i in range(oS.m):
  145. alphaPairsChanged += innerL(i,oS)
  146. print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  147. iter += 1
  148. else:#go over non-bound (railed) alphas
  149. nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
  150. for i in nonBoundIs:
  151. alphaPairsChanged += innerL(i,oS)
  152. print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  153. iter += 1
  154. if entireSet: entireSet = False #toggle entire set loop
  155. elif (alphaPairsChanged == 0): entireSet = True
  156. print "iteration number: %d" % iter
  157. return oS.b,oS.alphas
  158. def calcWs(alphas,dataArr,classLabels):
  159. X = mat(dataArr); labelMat = mat(classLabels).transpose()
  160. m,n = shape(X)
  161. w = zeros((n,1))
  162. for i in range(m):
  163. w += multiply(alphas[i]*labelMat[i],X[i,:].T)
  164. return w
  165. def testRbf(k1=1.3):
  166. dataArr,labelArr = loadDataSet('testSetRBF.txt')
  167. b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
  168. datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
  169. svInd=nonzero(alphas.A>0)[0]
  170. sVs=datMat[svInd] #get matrix of only support vectors
  171. labelSV = labelMat[svInd];
  172. print "there are %d Support Vectors" % shape(sVs)[0]
  173. m,n = shape(datMat)
  174. errorCount = 0
  175. for i in range(m):
  176. kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
  177. predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
  178. if sign(predict)!=sign(labelArr[i]): errorCount += 1
  179. print "the training error rate is: %f" % (float(errorCount)/m)
  180. dataArr,labelArr = loadDataSet('testSetRBF2.txt')
  181. errorCount = 0
  182. datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
  183. m,n = shape(datMat)
  184. for i in range(m):
  185. kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
  186. predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
  187. if sign(predict)!=sign(labelArr[i]): errorCount += 1
  188. print "the test error rate is: %f" % (float(errorCount)/m)
  189. def img2vector(filename):
  190. returnVect = zeros((1,1024))
  191. fr = open(filename)
  192. for i in range(32):
  193. lineStr = fr.readline()
  194. for j in range(32):
  195. returnVect[0,32*i+j] = int(lineStr[j])
  196. return returnVect
  197. def loadImages(dirName):
  198. from os import listdir
  199. hwLabels = []
  200. trainingFileList = listdir(dirName) #load the training set
  201. m = len(trainingFileList)
  202. trainingMat = zeros((m,1024))
  203. for i in range(m):
  204. fileNameStr = trainingFileList[i]
  205. fileStr = fileNameStr.split('.')[0] #take off .txt
  206. classNumStr = int(fileStr.split('_')[0])
  207. if classNumStr == 9: hwLabels.append(-1)
  208. else: hwLabels.append(1)
  209. trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
  210. return trainingMat, hwLabels
  211. def testDigits(kTup=('rbf', 10)):
  212. dataArr,labelArr = loadImages('trainingDigits')
  213. b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
  214. datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
  215. svInd=nonzero(alphas.A>0)[0]
  216. sVs=datMat[svInd]
  217. labelSV = labelMat[svInd];
  218. print "there are %d Support Vectors" % shape(sVs)[0]
  219. m,n = shape(datMat)
  220. errorCount = 0
  221. for i in range(m):
  222. kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
  223. predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
  224. if sign(predict)!=sign(labelArr[i]): errorCount += 1
  225. print "the training error rate is: %f" % (float(errorCount)/m)
  226. dataArr,labelArr = loadImages('testDigits')
  227. errorCount = 0
  228. datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
  229. m,n = shape(datMat)
  230. for i in range(m):
  231. kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
  232. predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
  233. if sign(predict)!=sign(labelArr[i]): errorCount += 1
  234. print "the test error rate is: %f" % (float(errorCount)/m)
  235. '''''#######********************************
  236. Non-Kernel VErsions below
  237. '''#######********************************
  238. class optStructK:
  239. def __init__(self,dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters
  240. self.X = dataMatIn
  241. self.labelMat = classLabels
  242. self.C = C
  243. self.tol = toler
  244. self.m = shape(dataMatIn)[0]
  245. self.alphas = mat(zeros((self.m,1)))
  246. self.b = 0
  247. self.eCache = mat(zeros((self.m,2))) #first column is valid flag
  248. def calcEkK(oS, k):
  249. fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
  250. Ek = fXk - float(oS.labelMat[k])
  251. return Ek
  252. def selectJK(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej
  253. maxK = -1; maxDeltaE = 0; Ej = 0
  254. oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E
  255. validEcacheList = nonzero(oS.eCache[:,0].A)[0]
  256. if (len(validEcacheList)) > 1:
  257. for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E
  258. if k == i: continue #don't calc for i, waste of time
  259. Ek = calcEk(oS, k)
  260. deltaE = abs(Ei - Ek)
  261. if (deltaE > maxDeltaE):
  262. maxK = k; maxDeltaE = deltaE; Ej = Ek
  263. return maxK, Ej
  264. else: #in this case (first time around) we don't have any valid eCache values
  265. j = selectJrand(i, oS.m)
  266. Ej = calcEk(oS, j)
  267. return j, Ej
  268. def updateEkK(oS, k):#after any alpha has changed update the new value in the cache
  269. Ek = calcEk(oS, k)
  270. oS.eCache[k] = [1,Ek]
  271. def innerLK(i, oS):
  272. Ei = calcEk(oS, i)
  273. if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
  274. j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
  275. alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
  276. if (oS.labelMat[i] != oS.labelMat[j]):
  277. L = max(0, oS.alphas[j] - oS.alphas[i])
  278. H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
  279. else:
  280. L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
  281. H = min(oS.C, oS.alphas[j] + oS.alphas[i])
  282. if L==H: print "L==H"; return 0
  283. eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
  284. if eta >= 0: print "eta>=0"; return 0
  285. oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
  286. oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
  287. updateEk(oS, j) #added this for the Ecache
  288. if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
  289. oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
  290. updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction
  291. b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
  292. b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
  293. if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
  294. elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
  295. else: oS.b = (b1 + b2)/2.0
  296. return 1
  297. else: return 0
  298. def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO
  299. oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
  300. iter = 0
  301. entireSet = True; alphaPairsChanged = 0
  302. while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
  303. alphaPairsChanged = 0
  304. if entireSet: #go over all
  305. for i in range(oS.m):
  306. alphaPairsChanged += innerL(i,oS)
  307. print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  308. iter += 1
  309. else:#go over non-bound (railed) alphas
  310. nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
  311. for i in nonBoundIs:
  312. alphaPairsChanged += innerL(i,oS)
  313. print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
  314. iter += 1
  315. if entireSet: entireSet = False #toggle entire set loop
  316. elif (alphaPairsChanged == 0): entireSet = True
  317. print "iteration number: %d" % iter
  318. return oS.b,oS.alphas
from numpy import *
from time import sleep

def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

def selectJrand(i,m):
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print "L==H"; continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]=='lin': K = X * A.T   #linear kernel
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K

class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters 
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
        
def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek
        
def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
        
def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print "L==H"; return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0: print "eta>=0"; return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas

def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w

def testRbf(k1=1.3):
    dataArr,labelArr = loadDataSet('testSetRBF.txt')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] #get matrix of only support vectors
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m)    
    
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels    

def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m) 


'''#######********************************
Non-Kernel VErsions below
'''#######********************************

class optStructK:
    def __init__(self,dataMatIn, classLabels, C, toler):  # Initialize the structure with the parameters 
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        
def calcEkK(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
    Ek = fXk - float(oS.labelMat[k])
    return Ek
        
def selectJK(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEkK(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
        
def innerLK(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print "L==H"; return 0
        eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
        if eta >= 0: print "eta>=0"; return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas

运行结果如(图八)所示:


(图八)

上面代码有兴趣的可以读读,用的话,建议使用libsvm。

参考文献:

[1]machine learning in action. PeterHarrington

[2] pattern recognition and machinelearning. Christopher M. Bishop

[3]machine learning.Andrew Ng


转载请注明来源: http://blog.csdn.net/cuoqu/article/details/9305497
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值