剑指offer——面试题9计算斐波纳切第n个数

本文介绍两种计算斐波纳切数列的方法:递归和迭代。递归方法直观但效率低下,存在大量重复计算;迭代方法通过记录并复用已计算值,显著提高计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**
 * 计算斐波纳切数列的第n个值
 * @author chibozhou
 *
 */
public class Fibonacci {
	/**
	 * 分析:斐波纳切数列的第n个数的值是其前两个数之和,
	 * 因此要计算第n个数就需要计算其前两个数,
	 * 以此类推,直到计算出第0个数为止,
	 * 因此可以使用递归。
	 */
	
	/**
	 * 采用递归的方法
	 */
	public static int fibonacci(int n){
		//健壮性判断
		if(n<0){
			System.out.println("n不能小于0!");
			return 0;
		}
		
		//n==0
		else if(n==0)
			return 0;
		
		//n==1
		else if(n==1)
			return 1;
		
		//n>1
		else
			return fibonacci(n-1) + fibonacci(n-2);
		
	}
	
	
	
	/**
	 * 上述递归的代码虽然简单,但所需的内存空间很大,
	 * 而且在递归的过程中,有很多计算是重复的,比如:
	 * fibonacci(6)=fibonacci(5)+fibonacci(4)
	 * 		fibonacci(5)=fibonacci(4)+fibonacci(3)
	 * 		fibonacci(4)=fibonacci(3)+fibonacci(2)
	 * 由此可见:fibonacci(4)、fibonacci(3)均被重复计算,
	 * 因此递归的方法在时间和空间上的开销都很大!
	 * 是否有比递归更好的办法来实现斐波纳切?
	 */
	
	
	
	/**
	 * 递归之所以开销巨大,是因为它是一个自顶向下的计算过程,
	 * 要计算fibonacci(n),就需要先计算fibonacci(n-1)和fibonacci(n-2),
	 * 而在fibonacci(0)被计算出之前,之前所有的函数都处于在内存中等待的状态,都占用着内存空间;
	 * 因此,如果我们采用自底向上的方式,每完成一个fibonacci函数,就记录下该值,并释放其内存空间,
	 * 就能节约内存空间。
	 * 此外,由于fibonacci(n)是由前两个数相加得到的,
	 * 因此只要将每次计算结果和前一个数记录下来,就能计算出之后值,从而避免了重复计算。
	 * @param n 斐波纳切数列长度
	 * @return 第n个元素值
	 */
	public static int fibonacci_recursion(int n){
		//健壮性判断
		if(n<0){
			System.out.println("n不能小于0");
			return 0;
		}
		
		if(n==0 || n==1)
			return n;
		
		//a1用于存储fibonacci(n-2),a2用于存储fibonacci(n-1),a3用于存储fibonacci(n)
		int a1=0,a2=1,a3=1;
		for(int i=0;i<n-1;i++){
			a3 = a1+a2;
			a1 = a2;
			a2 = a3;
		}
		
		return a3;
	}
	

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值