Veo Videos Generation API 对接说明

本文将介绍一种 Veo Videos Generation API 对接说明,它是可以通过输入自定义参数来生成Veo官方的视频。

接下来介绍下 Veo Videos Generation API 的对接说明。

申请流程

要使用 API,需要先识别下方二维码:

然后到 Veo Videos Generation API 对应页面申请对应的服务,进入页面之后,点击「Acquire」按钮,如图所示:

如果你尚未登录或注册,会自动跳转到登录页面邀请您来注册和登录,登录注册之后会自动返回当前页面。

在首次申请时会有免费额度赠送,可以免费使用该 API。

基本使用

首先先了解下基本的使用方式,就是输入提示词 prompt、 生成行为 action、首尾帧参考图片数组 image_urls 以及模型 model,便可获得处理后的结果,首先需要简单地传递一个 action 字段,它的值为 text2video,它主要包含三种行为:文生视频(text2video)、图生视频(image2video)、获取1080p视频(get_1080p),然后我们还需要输入模型 model,目前主要有 veo2 、veo2-fastveo3 和 veo3-fast 模型,具体的内容如下:

可以看到这里我们设置了 Request Headers,包括:

  • accept:想要接收怎样格式的响应结果,这里填写为 application/json,即 JSON 格式。

  • authorization:调用 API 的密钥,申请之后可以直接下拉选择。

另外设置了 Request Body,包括:

  • model:生成视频的模型,主要有 veo2 、veo2-fastveo3 和 veo3-fast 模型。

  • action:此次视频生成任务的行为,主要包含三种行为,分别为:文生视频(text2video)、图生视频(image2video)、获取1080p视频(get_1080p)。

  • image_urls:当选择图生视频行为 image2video 就必须需要上传的首尾帧参考图片链接。

  • prompt:提示词。

  • callback_url:需要回调结果的URL。

选择之后,可以发现右侧也生成了对应代码,如图所示:

点击「Try」按钮即可进行测试,如上图所示,这里我们就得到了如下结果:

{
  "success": true,
"task_id": "dd01fc69-e1f7-4b68-aa8c-463f6b748d11",
"trace_id": "9906dac0-1516-41dc-9fe3-067ca1ba8269",
"data": [
    {
      "id": "253eedc47f1c4eb2a370ed2312168f4b",
      "video_url": "https://platform.cdn.acedata.cloud/veo/dd01fc69-e1f7-4b68-aa8c-463f6b748d11.mp4",
      "created_at": "2025-07-25 16:07:43",
      "complete_at": "2025-07-25 16:10:28",
      "state": "succeeded"
    }
  ]
}

返回结果一共有多个字段,介绍如下:

  • success,此时视频生成任务的状态情况。

  • task_id,此时视频生成任务ID。

  • data,此时视频生成任务的结果。

    • id,此时视频生成任务的视频ID。

    • video_url,此时视频生成任务的视频链接。

    • created_at,此时视频生成任务的创建时间。

    • complete_at,此时视频生成任务的完成时间。

    • state,此时视频生成任务的状态。

可以看到我们得到了满意的视频信息,我们只需要根据结果中 data 的视频链接地址获取生成的Veo视频即可。

另外如果想生成对应的对接代码,可以直接复制生成,例如 CURL 的代码如下:

curl -X POST 'https://api.acedata.cloud/veo/videos' \
-H 'accept: application/json' \
-H 'authorization: Bearer {token}' \
-H 'content-type: application/json' \
-d '{
  "action": "text2video",
  "model": "veo2",
  "prompt": "White ceramic coffee mug on glossy marble countertop with morning window light. Camera slowly rotates 360 degrees around the mug, pausing briefly at the handle."
}'

图生视频功能

如果想根据首尾帧图片进行生成视频的话,可以将参数 action 设置为 image2video ,并且输入首尾帧图片链接数组 image_urls

接下来我们要必须填下一步需要扩展的提示词来自定义生成视频,就可以指定如下内容:

  • model:生成视频的模型,主要有veo2 、veo2-fastveo3 和 veo3-fast

  • image_urls:当选择图生视频行为 image2video 就必须需要上传的首尾帧参考图片链接。

  • prompt:提示词。

填写样例如下:

填写完毕之后自动生成了代码如下:

对应的 Python 代码:

import requests

url = "https://api.acedata.cloud/veo/videos"

headers = {
    "accept": "application/json",
    "authorization": "Bearer {token}",
    "content-type": "application/json"
}

payload = {
    "action": "image2video",
    "model": "veo2",
    "prompt": "Let it dance",
    "image_urls": ["https://cdn.acedata.cloud/7p1jhy.png"]
}

response = requests.post(url, json=payload, headers=headers)
print(response.text)

点击运行,可以发现会得到一个结果,如下:

{
  "success": true,
"task_id": "98e309f3-35bc-438d-8cb3-4015fc864b87",
"trace_id": "8bc68066-36de-41ef-ae5e-b7d61ff6aee8",
"data": [
    {
      "id": "59f12222b1fa4fbe9331ff2400ad1583",
      "video_url": "https://platform.cdn.acedata.cloud/veo/98e309f3-35bc-438d-8cb3-4015fc864b87.mp4",
      "created_at": "2025-07-25 16:13:07",
      "complete_at": "2025-07-25 16:16:12",
      "state": "succeeded"
    }
  ]
}

可以看出,结果内容与上文的是一致的,这也就实现视频的图生视频功能。

图生视频功能

如果想对已经生成的Veo视频获取1080p的话,可以将参数 action 设置为 get_1080p ,并且输入需要获取1080p的视频的 ID,视频 ID 的获取是根据基本使用来获取,如下图所示:

这时候可以看到视频的 ID 为:

"id": "59f12222b1fa4fbe9331ff2400ad1583"

注意,这里的视频中 video_id 是生成后视频的 ID,如果你不知道如何生成视频,可以参考上文的基本使用来生成视频。

接下来我们要必须填下一步需要扩展的提示词来自定义生成视频,就可以指定如下内容:

  • model:生成视频的模型,主要有 veo2 、veo2-fastveo3 和 veo3-fast

  • video_id:参考的视频ID,用于获取1080p的视频。

填写样例如下:

填写完毕之后自动生成了代码如下:

点击运行,可以发现会得到一个结果,如下:

{
  "success": true,
"task_id": "47a51cfe-2e24-4aba-93b3-546c2dc52984",
"trace_id": "a8922eec-6f50-4f77-8104-00ded071d59d",
"data": [
    {
      "id": "59f12222b1fa4fbe9331ff2400ad1583",
      "video_url": "https://platform.cdn.acedata.cloud/veo/47a51cfe-2e24-4aba-93b3-546c2dc52984.mp4",
      "created_at": "2025-07-25 16:13:07",
      "complete_at": "2025-07-25 16:16:12",
      "state": "succeeded"
    }
  ]
}

可以看出,结果内容与上文的是一致的,这也就实现视频的获取1080p视频功能。

异步回调

由于 Veo Videos Generation API生成的时间相对较长,大约需要 1-2 分钟,如果 API 长时间无响应,HTTP 请求会一直保持连接,导致额外的系统资源消耗,所以本 API 也提供了异步回调的支持。

整体流程是:客户端发起请求的时候,额外指定一个 callback_url 字段,客户端发起 API 请求之后,API 会立马返回一个结果,包含一个 task_id 的字段信息,代表当前的任务 ID。当任务完成之后,生成视频的结果会通过 POST JSON 的形式发送到客户端指定的 callback_url,其中也包括了 task_id 字段,这样任务结果就可以通过 ID 关联起来了。

下面我们通过示例来了解下具体怎样操作。

首先,Webhook 回调是一个可以接收 HTTP 请求的服务,开发者应该替换为自己搭建的 HTTP 服务器的 URL。此处为了方便演示,使用一个公开的 Webhook 样例网站 https://webhook.site/,打开该网站即可得到一个 Webhook URL,如图所示:

将此 URL 复制下来,就可以作为 Webhook 来使用,此处的样例为 https://webhook.site/aed5cd28-f8aa-4dca-9480-8ec9b42137dc

接下来,我们可以设置字段 callback_url 为上述 Webhook URL,同时填入相应的参数,具体的内容如图所示:

点击运行,可以发现会立即得到一个结果,如下:

{
  "task_id": "1ebe4f2b-59ba-4385-a4ea-0ce8a3fe12ed"
}

稍等片刻,我们可以在 https://webhook.site/aed5cd28-f8aa-4dca-9480-8ec9b42137dc 上观察到生成视频的结果,如图所示:

内容如下:

{
  "success": true,
"task_id": "1ebe4f2b-59ba-4385-a4ea-0ce8a3fe12ed",
"trace_id": "d1d53c04-58c5-4c40-bb63-f00188540e56",
"data": [
    {
      "id": "2f43ceed37944b4d836e1a1899dad0a1",
      "video_url": "https://platform.cdn.acedata.cloud/veo/1ebe4f2b-59ba-4385-a4ea-0ce8a3fe12ed.mp4",
      "created_at": "2025-07-25 17:19:20",
      "complete_at": "2025-07-25 17:21:45",
      "state": "succeeded"
    }
  ]
}

可以看到结果中有一个 task_id 字段,其他的字段都和上文类似,通过该字段即可实现任务的关联。

错误处理

在调用 API 时,如果遇到错误,API 会返回相应的错误代码和信息。例如:

  • 400 token_mismatched:Bad request, possibly due to missing or invalid parameters.

  • 400 api_not_implemented:Bad request, possibly due to missing or invalid parameters.

  • 401 invalid_token:Unauthorized, invalid or missing authorization token.

  • 429 too_many_requests:Too many requests, you have exceeded the rate limit.

  • 500 api_error:Internal server error, something went wrong on the server.

错误响应示例

{
  "success": false,
  "error": {
    "code": "api_error",
    "message": "fetch failed"
  },
  "trace_id": "2cf86e86-22a4-46e1-ac2f-032c0f2a4e89"
}

结论

通过本文档,您已经了解了如何使用 Veo Videos Generation API 可通过输入提示词以及首帧参考图片来生成视频。希望本文档能帮助您更好地对接和使用该 API。如有任何问题,请随时联系我们的技术支持团队。

标题SpringBoot基层智能化人员调度系统研究AI更换标题第1章引言介绍SpringBoot基层智能化人员调度系统的研究背景、意义、现状以及论文的研究方法和创新点。1.1研究背景与意义分析当前基层人员调度的现状和问题,阐述智能化调度的必要性和意义。1.2国内外研究现状概述国内外在基层智能化人员调度系统方面的研究进展和应用情况。1.3论文方法及创新点介绍本文采用的研究方法和实现智能化人员调度系统的创新点。第2章相关理论阐述SpringBoot框架、智能化调度算法和人员调度理论。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势和应用场景。2.2智能化调度算法总结现有的智能化调度算法,并分析其优缺点。2.3人员调度理论基础阐述人员调度的基本概念、原则和方法。第3章系统需求分析对SpringBoot基层智能化人员调度系统进行需求分析,包括功能性需求和非功能性需求。3.1功能性需求明确系统需要实现的功能,如人员信息管理、任务分配、调度策略制定等。3.2非功能性需求分析系统的性能、安全性、可靠性等非功能性需求。3.3需求优先级划分根据实际需求,对各项需求进行优先级划分。第4章系统设计详细介绍SpringBoot基层智能化人员调度系统的设计方案,包括架构设计、数据库设计和界面设计。4.1架构设计给出系统的整体架构,包括前后端分离、微服务架构等设计理念。4.2数据库设计设计合理的数据库表结构,满足系统的数据存储和查询需求。4.3界面设计设计简洁、易用的用户界面,提升用户体验。第5章系统实现阐述SpringBoot基层智能化人员调度系统的具体实现过程,包括核心代码实现、功能模块实现等。5.1核心代码实现详细介绍系统核心功能的代码实现,如人员信息管理、任务分配算法等。5.2功能模块实现分别介绍各个功能模块的实现过程,如用户登录、人员信息管理、任务管理等。第6章系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值