大型语言模型(LLMs)非常强大,但它们缺乏“最笨”的计算机程序可以轻松处理的特定能力。LLM 对逻 辑推理、计算和检索外部信息的能力较弱,这与最简单的计算机程序形成对比。例如,语言模型无法准 确回答简单的计算问题,还有当询问最近发生的事件时,其回答也可能过时或错误,因为无法主动获取 最新信息。这是由于当前语言模型仅依赖预训练数据,与外界“断开”。要克服这一缺陷, LangChain 框 架提出了 “代理”(Agent)的解决方案。
代理作为语言模型的外部模块,可提供计算、逻辑、检索等功能的支持,使语言模型获得异常强大的推 理和获取信息的超能力。
在本章中,我们将详细介绍代理的工作机制、种类、以及如何在 LangChain 中将其与语言模型配合,构 建功能更全面、智能程度更高的应用程序。代理机制极大扩展了语言模型的边界,是当前提升其智能的 重要途径之一。让我们开始学习如何通过代理释放语言模型的最大潜力。
使用LangChain内置工具llm-math和wikipedia
pip install langchain