高效数据存储:列式存储、分区、索引优化(Parquet、ORC、数据分桶)

1. 引言

在大数据处理和存储场景中,数据存储的方式直接影响查询性能和存储成本。合理利用列式存储、分区、索引优化等技术,可以显著提升数据查询效率,降低计算资源消耗。本文将深入探讨 Parquet、ORC 等列式存储格式,以及分区、数据分桶等优化策略。

2. 列式存储(Columnar Storage)

2.1 行存储 vs. 列存储

数据存储方式通常分为行存储(Row-based Storage)和列存储(Columnar Storage):

  • 行存储(Row-based Storage):数据按行存放,适用于 OLTP(在线事务处理)场景,例如 MySQL、PostgreSQL。

  • 列存储(Columnar Storage):数据按列存放,适用于 OLAP(在线分析处理)场景,例如 Apache Parquet、ORC、ClickHouse。

示例:行存储 vs. 列存储对比
ID Name Age Salary
1 Alice 30 5000
2 Bob 35 7000
3 Carol 40 8000

行存储(Row-based)

1, Alice, 30, 5000
2, Bob, 35, 7000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值