Flink 运维监控与指标采集实战

一、引言:实时任务为什么必须监控?

在实时任务中,任务失败、数据延迟、资源瓶颈往往并非由明显的代码异常引发,而是隐蔽地潜藏在:

  • Kafka 积压无告警

  • Flink Checkpoint 卡顿却无人知晓

  • 反压、TaskManager 内存 OOM 未实时感知

为了保障业务 SLA、高可用与可观测性,构建完善的 Flink 运维监控体系势在必行。


二、Flink 自带的指标体系概览

Flink 提供了丰富的内部指标(Metrics System),可通过 MetricsReporter 采集至外部系统(如 Prometheus、InfluxDB、JMX 等):

指标类别 示例 含义
Checkpoint 指标 checkpoint_latest_duration,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值