本文围绕大数据存储层的核心技术展开,深入讲解 Parquet 与 ORC 格式对比、动态分区与分桶实践、查询加速技巧,以及如何设计冷热分层存储策略,实现更高效、更经济的大数据分析体系。
🧠 一、为什么需要优化大数据存储?
在大数据分析中,存储层设计的好坏直接决定查询性能与资源成本:
-
不合理的存储格式 → I/O 开销巨大,查询慢
-
无分区或分区粒度错误 → 扫描全量数据
-
无索引 → 无法快速定位数据
-
数据冷热不分 → 高成本维护冷数据
高效的存储设计 = 读得少 + 算得快 + 用得起
🧱 二、列式存储格式对比:Parquet vs ORC
特性 | Parquet | ORC |
---|---|---|
压缩率 | 优秀(Snappy 默认) | 极优(Zlib 默认) |
查询性能 | 优(宽表场景表现好) | 极优(Hive 查询优化好) |
写入性能 | 优 | 一般 |