Rubost PCA 优化

本文总结了Robust PCA在背景建模中的优化方法,包括增广拉格郎日乘子法、交替方向法(ADM)、迭代阈值法和加速近端梯度法。这些方法用于解决数据矩阵低秩结构恢复,特别是面对稀疏大噪声的情况。文章提到,尽管迭代阈值法(IT)简单,但收敛速度慢,而加速近端梯度(APG)和ALM能更快收敛,IALM则在速度和精度间取得平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近一直在看Robust PCA做背景建模的paper, 顺便总结了一下了Robust PCA.前面一篇博客介绍了PCA与Robust PCA区别,本篇博客总结Robust PCA 常见的优化方法,欢迎交流学习。在这里强烈推荐一篇博客Rachel Zhang的Robust PCA 学习笔记

1.预备知识

这里写图片描述

2.问题描述

许多实际应用中已知的数据矩阵D往往是低秩或近似低秩的,但存在随机幅值任意大且分布稀疏的误差破坏了原有数据的低秩性,为了恢复矩阵D的低秩结构,可将矩阵D分解为两个矩阵之和,即D=A+E,其中矩阵A和E未知,但A是低秩的,E是稀疏的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值