低延迟小智AI服务端搭建-本地TTS篇:CosyVoice流式推理

前段时间,分享了低延迟小智AI服务端搭建的 ASR、LLM 和 TTS 部分:

这三个环节中,成本最高的当属 TTS

上篇是本地TTS篇的第一篇:

低延迟小智AI服务端搭建-本地TTS篇:fishspeech流式推理

本篇,实测本地部署的 CosyVoice2.0,这也是阿里云上提供的云端 tts 采用的模型。

1. 关于 CosyVoice2.0

本地部署 cosyvoice2.0 并搭建音色克隆服务,笔者之前有分享过:阿里开源 CosyVoice 再升级!支持流式输出,本地部署实测,在此不再赘述。

相比 fishspee

### 关于 CosyVoice 流式处理功能的使用方法 CosyVoice 是一种先进的语音合成大模型,支持多种应用场景下的语音生成需求。其流式处理功能允许开发者通过分段的方式逐步获取合成后的音频数据[^1]。以下是有关如何实现和调用该功能的具体说明: #### 1. **流式语音合成的基本原理** 流式语音合成功能的核心在于将输入文本分割成多个片段并逐一发送到服务器进行处理。每次返回的结果可以立即用于播放或其他操作,从而减少延迟时间。这种方式特别适合实时场景的应用开发。 #### 2. **API 请求结构** 根据官方文档描述以及实践案例分析,在 HTTP 协议下可以直接向指定 URL 发起 POST 请求来触发流式语音合成逻辑[^3]。具体参数设置如下所示: - `url`: 接口路径通常形如`http://<your_server_ip>:50000/stream_synthesize` - `headers`: 需要定义 Content-Type 字段为 application/json - `body`: JSON 格式的请求体包含至少两个主要字段——text 和 voice_id ```json { "text": "这是一段测试文字。", "voice_id": "standard_female" } ``` 其中,“text”表示待转换的目标字符串;“voice_id”则决定了最终输出声音风格的选择依据个人喜好或者业务需求选取合适的预设值即可完成配置过程[^2]. #### 3. **客户端接收与解析响应** 当上述条件满足之后提交给后台程序执行完毕后会持续不断地推送部分已完成编码的数据包直到整个流程结束为止; 客户端应当具备相应的能力以便能够及时捕获这些动态变化的信息流并将它们组合起来形成完整的媒体文件供后续利用. 值得注意的是由于网络状况等因素的影响可能会造成某些情况下无法顺利取得预期效果因此建议增加错误重试机制提高系统的稳定性同时也要考虑到带宽消耗等问题合理规划资源分配策略确保用户体验不受损害. --- ### 示例代码展示 下面给出一段 Python 实现的例子演示如何连接至远程服务端点并通过 WebSocket 技术保持长久通信链路进而达成连续性的音效呈现: ```python import websocket try: import thread except ImportError: import _thread as thread def on_message(ws, message): print(f"Received audio chunk: {message}") def on_error(ws, error): print(f"Error occurred: {error}") def on_close(ws, close_status_code, close_msg): print("Connection closed") def on_open(ws): def run(*args): request_data = { 'text': '欢迎体验阿里巴巴集团推出的全新一代通义千问系列语言模型。', 'voice_id': 'custom_male' } ws.send(json.dumps(request_data)) if __name__ == "__main__": url = "ws://localhost:50000/websocket_stream_synthesize" ws = websocket.WebSocketApp(url, on_open=on_open, on_message=on_message, on_error=on_error, on_close=on_close) ws.run_forever() ``` 此脚本展示了基本框架但实际应用当中可能还需要加入更多细节调整才能达到理想状态比如自定义事件处理器函数等等都可根据具体情况灵活修改适应不同环境要求.[^1] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值