python 实现朴素贝叶斯算法

朴素贝叶斯算法是一种基于概率论的分类算法,它的核心思想是通过贝叶斯定理计算后验概率,然后选择具有最大后验概率的类别作为预测结果。

首先,需要统计训练数据中每个类别的先验概率和每个特征在每个类别中的条件概率。然后,对于一个新的样本,利用这些概率计算出属于每个类别的后验概率,并选择具有最大后验概率的类别作为预测结果。

下面是一个简单的示例代码实现朴素贝叶斯算法:

import numpy as np

class NaiveBayes:
    def fit(self, X, y):
        self.classes = np.unique(y)
        self.priors = np.zeros(len(self.classes))
        self.likelihoods = []

        for i, c in enumerate(self.classes):
            X_c = X[y == c]
            self.priors[i] = X_c.shape[0] / X.shape[0]

            likelihood = []
            for j in range(X.shape[1]):
                feature_values = np.unique(</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值