11.3 一些有益的建议

【建议11-3-1】当心那些视觉上不易分辨的操作符发生书写错误。我们经常会把“==”误写成“=”,象“||”、“&&”、“<=”、“>=”这类符号也很容易发生“丢1”失误。然而编译器却不一定能自动指出这类错误。

【建议11-3-2】变量(指针、数组)被创建之后应当及时把它们初始化,以防止把未被初始化的变量当成右值使用。

【建议11-3-3】当心变量的初值、缺省值错误,或者精度不够。

【建议11-3-4】当心数据类型转换发生错误。尽量使用显式的数据类型转换(让人们知道发生了什么事),避免让编译器轻悄悄地进行隐式的数据类型转换。

【建议11-3-5】当心变量发生上溢或下溢,数组的下标越界。
【建议11-3-6】当心忘记编写错误处理程序,当心错误处理程序本身有误。
【建议11-3-7】当心文件I/O 有错误。
【建议11-3-8】避免编写技巧性很高代码。
【建议11-3-9】不要设计面面俱到、非常灵活的数据结构。

【建议11-3-10】如果原有的代码质量比较好,尽量复用它。但是不要修补很差劲的代码,应当重新编写。

【建议11-3-11】尽量使用标准库函数,不要“发明”已经存在的库函数。
【建议11-3-12】尽量不要使用与具体硬件或软件环境关系密切的变量。
【建议11-3-13】把编译器的选择项设置为最严格状态。
【建议11-3-14】如果可能的话,使用PC-Lint、LogiScope 等工具进行代码审查。

### CUDA 11.3 安装教程及兼容性说明 #### 工具包与驱动版本对应关系 CUDA 11.3 的安装需要满足特定的硬件和软件环境需求。根据 NVIDIA 官方文档中的描述,CUDA 11.3 对应的最低显卡驱动版本为 460.39[^2]。这意味着如果用户的系统中已安装低于此版本的驱动程序,则需先升级到支持 CUDA 11.3 的驱动。 #### 系统要求 对于 Windows 平台下的 TensorFlow 编译工作流而言,除了上述提到的驱动版本外,还需要注意内存分配情况以及 Python 版本的选择。例如,在尝试编译带有 CUDA 支持的 TensorFlow 时,推荐至少具备 8GB RAM 来完成整个构建过程[^3]。此外,Python 解释器应当选用经过验证能够良好协作的具体发行版号;比如针对 TensorFlow 2.5.0 和 CUDA 11.3 组合场景下建议采用 Python 3.9.x 系列作为开发基础运行时环境之一。 #### cuDNN 配置指南 另一个重要组件是 cuDNN 库文件集,它提供了高度优化过的深度神经网络原语实现方案从而加速训练流程执行效率。就当前讨论范围内的配置参数来看,cuDNN v8.2.0 是被广泛接受并与之匹配良好的候选对象,并且其适用范围涵盖了从架构代号 GeForce GTX Titan X 到 Ampere 架构之间的大多数主流型号GPU设备。 以下是基于以上信息整理出来的一个简化版操作手册: ```bash # 更新并安装最新NVIDIA GPU Driver >=460.39 sudo apt-get update && sudo apt-get install nvidia-driver-<version> # 下载对应平台预编译好的CUDA Toolkit tarball 或者通过runfile方式部署 wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_<platform>.tar.xz tar -xvJf cuda_*.tar.xz --directory /usr/local/ export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH # 获取cuDNN库压缩包解压至指定目录 cd ~/Downloads/ unzip cudnn-*-windows.zip cp include/* $CUDA_HOME/include/. cp lib/x64/*.dll $CUDA_HOME/bin/. cp lib/x64/*.lib $CUDA_HOME/lib/x64/. # 测试设置是否成功 nvcc --version nvidia-smi ``` 请注意实际命令可能依据具体操作系统有所不同,请参照官方指引调整相应部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值