AdaBoost 简单的demo

本文介绍如何通过 AdaBoost 算法将多个弱分类器整合为一个强分类器的过程。具体包括针对单个特征的 AdaBoost 实现,以及在多特征情况下的遍历计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AdaBoost Demo
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

上面的是针对单个特征,也就是说如果按照单个特征进行Adaboost,则可以得出三个弱分类器组成的强分类器;如果是多个特征,就需要遍历每一个特征,类似于一个特征时的计算过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值